
Towards Energy-Aware TinyML on Battery-Less IoT
Devices

Adnan Sabovica, Michiel Aernoutsa, Dragan Subotica, Jaron Fontaineb, Eli De
Poorterb, Jeroen Famaeya

aUniversity of Antwerp - imec, IDLab
Sint-Pietersvliet 7, 2000 Antwerp, Belgium

bIDLab, Ghent University - imec
Technologiepark-Zwijnaarde 126, 9052 Ghent

Abstract

With the advent of Tiny Machine Learning (tinyML), it is increasingly fea-
sible to deploy optimized ML models on constrained battery-less Internet of
Things (IoT) devices with minimal energy availability. Due to the unpredictable
and dynamic harvesting environment, successfully running tinyML on battery-
less devices is still challenging. In this paper, we present the energy-aware
deployment and management of tinyML algorithms and application tasks on
battery-less IoT devices. We study the trade-offs between different inference
strategies, analyzing under which circumstances it is better to make the deci-
sion locally or send the data to the Cloud where the heavy-weight ML model
is deployed, respecting energy, accuracy, and time constraints. To decide which
of these two options is more optimal and can satisfy all constraints, we define
an energy-aware tinyML optimization algorithm. Our approach is evaluated
based on real experiments with a prototype for battery-less person detection,
which considers two different environments: (i) a controllable setup with arti-
ficial light, and (ii) a dynamic harvesting environment based on natural light.
Our results show that the local inference strategy performs best in terms of
execution speed when a controllable harvesting environment is considered. It
can execute 3 times as frequently as remote inference at a harvesting current
of 2mA and using a capacitor of 1.5F. In a realistic harvesting scenario with
natural light and making use of the energy-aware optimization algorithm, the
device will favor remote inference under high light conditions due to the better
accuracy of the Cloud-based model. Otherwise, it switches to local inference.

Email addresses: adnan.sabovic@uantwerpen.be (Adnan Sabovic),
michiel.aernouts@uantwerpen.be (Michiel Aernouts), dragan.subotic@uantwerpen.be
(Dragan Subotic), jaron.fontaine@ugent.be (Jaron Fontaine), eli.depoorter@ugent.be
(Eli De Poorter), jeroen.famaey@uantwerpen.be (Jeroen Famaey)

Preprint submitted to Elsevier January 20, 2023

1. Introduction

Over the last decade, the Internet of Things (IoT) concept has grown steadily,
representing one of the critical roles of the Internet of the future [1]. It allows
billions of tiny devices to connect and communicate with each other while per-
forming different tasks such as collecting, processing, and transmitting data
with the aim to simplify and improve daily life [2][3]. The improvements in sen-
sors, low-power communication technologies, and processor efficiency, as well as
their low price and easy maintenance, allow such devices to innovate in various
fields, from home automation [4] and industrial monitoring [5] to sports activity
monitoring [6] and predictive healthcare [7].

Nowadays, most IoT devices rely on batteries, which can provide stable
power, but at the same time are bulky, short-lived, and dangerous if not care-
fully protected. These batteries can contain toxic chemical components that
are harmful to the environment, which makes their maintenance, disposal, and
replacement expensive and definitely ecologically unacceptable. As the number
of IoT devices is growing at an amazing rate, it is clear that the use of batteries
must be reconsidered if we want to make a sustainable IoT vision come true [8].

Tiny battery-less IoT devices that entirely depend on harvested environmen-
tal energy are a promising solution to alleviate the IoT’s battery problem. These
devices collect energy from different environmental and renewable sources (e.g.,
solar, vibration, thermal) and store it in small capacitors that act as the main
energy storage [2]. These capacitors are more resistant to capacity degrada-
tion compared to batteries, which prolongs their lifetime to potentially decades.
Also, they are less sensitive to extreme temperatures and can support operations
in a wide temperature range. On the other side, batteries operate poorly in cold
temperatures as their efficiency drops and show similar behavior when the high-
temperature scenarios are considered due to overheating. Finally, battery-less
devices are easy to recycle and practically maintenance-free, which makes them
environmentally friendly and suitable for applications in hard-to-reach locations
and large-scale deployments [2] [3].

Machine learning (ML) is successfully employed in many fields and appli-
cations (e.g., object detection, image classification, and audio recognition)[9],
where it is used for data analysis, making systems intelligent in terms of decision-
making. These ML algorithms are mostly based on neural networks, achieving
high accuracy, but at the same time requiring large computational power and
memory resources [10]. As battery-less IoT devices are resource-constrained
with very limited power supply, and they are usually equipped with limited
computing and storage capabilities [11], deploying ML on battery-less IoT de-
vices is highly challenging. Currently, most of these devices are only used to
collect and send data to the Cloud, where the ML-based data processing and
decision-making algorithms are executed.

In order to tackle these challenges, there is a new concept called Tiny Ma-
chine Learning (tinyML), with the aim of designing, developing, and running
optimized ML models on ultra-low-power IoT devices with minimal energy con-
sumption [12]. There are a lot of benefits and advantages that come with this

2

technology [12] [9]. By integrating ML models within tiny battery-less IoT de-
vices, each of these devices becomes able to process data and make decisions
locally, without a need to transmit the collected data to the Cloud. Using this
approach, network load and latency are reduced, and the security and privacy
of data are increased, making the local inference approach more beneficial.

Despite all the advantages and improvements, there are still many challenges
when it comes to deploying tinyML models on battery-less IoT devices. As these
devices operate in a dynamic and unpredictable energy environment, power
failures can occur at any moment, resulting in intermittent on-off behavior of
the device. Based on that, it is crucial to find a way of enabling successful task
cycles by handling such behavior and reducing the possibility of power failures.
This problem can be solved with task-based scheduling models [13] [14], where
the application is divided into connected tasks that perform atomic functions.
However, traditional task-based scheduling algorithms do not explicitly consider
the available and required energy. In this paper, we study the energy-aware
deployment and management of tinyML algorithms on battery-less IoT devices.
The task scheduling strategy is built based on our previous work on energy-
aware task scheduling [2] aiming to extend energy-aware resource management
and execution to ML tasks. The proposed task scheduler is able to intelligently
schedule application tasks based on their priorities and dependencies, taking into
account the harvested and available energy, energy consumed by the task as well
as the required amount of energy that needs to be collected for its successful
execution. By considering energy awareness, our approach can avoid power
failures during tasks and maintain forward progress. We developed, trained, and
deployed a Convolutional Neural Network (CNN) on the Cloud, after which we
employed state-of-the-art network pruning techniques to convert Cloud-based
NN models into smaller tinyML models that can be executed on constrained
battery-less IoT devices.

The main contributions in this paper are: (i) a system architecture to enable
energy-aware tinyML inferencing tasks on battery-less IoT devices, with support
for task-offloading; (ii) a formal mathematical model to calculate the optimal
decision in terms of tinyML task execution as a function of energy harvesting
and storage; (iii) a hardware-software prototype of the proposed solution that
enables person detection on battery-less IoT devices; (iv) realistic evaluation
and validation of our approach based on the device prototype.

The remainder of this paper is structured as follows. Section 2 reviews the
state of the art on battery-less computing and scheduling, and tinyML model
deployment on battery-less IoT devices. In Section 3, the proposed system
architecture is described together with the energy-aware optimization algorithm
and mathematical model. Section 4 describes how the ML model for person
detection is developed, trained, and integrated on battery-less IoT devices and
the Cloud, including the description of the used prototype. Section 5 presents
an accurate device profiling methodology to determine the current consumption
and execution time of different application tasks and device states, which is
used as input to the scheduling algorithm. Section 6 shows the evaluation and
validation results, together with the discussion. Finally, our conclusions are

3

provided in Section 7.

2. Related Work

With the emergence of battery-less IoT devices, it becomes possible to exe-
cute and run different computer programs on small embedded systems without
the need for a dedicated battery as a power source [15]. The interest in using
these devices in various fields, from wireless sensor networks (WSN) to differ-
ent IoT applications, constantly grows. However, they are still mainly used
for simple sensing applications, where the device needs to collect some data and
transmit it to the Cloud or a more powerful machine for further processing. The
integration of tinyML models and algorithms would make these devices capable
of executing more intelligent tasks, which pushes the limit of battery-less com-
puting and processing. There are still some challenges that this concept faces.
First, it is required to enable these devices to successfully operate despite the
unpredictable energy-harvesting environment. Second, it is important to find a
way to convert a huge ML model into a lightweight version that is more suitable
for running on a battery-less IoT device without losing too much accuracy.

2.1. Battery-less task scheduling
Traditional computing models and static sequential applications cannot han-

dle the intermittent on/off behavior of battery-less IoT devices, as they assume
the device has an uninterrupted execution of tasks and rely on volatile memory
to maintain application progress. The task-based models, which split the pro-
gram into atomic connected tasks and store the necessary data in non-volatile
memory, show better performance in preserving forward progress, making them
more suitable for battery-less devices.

In [16] and [13], two low-overhead programming models for intermittent com-
puting on energy-harvesting devices have been presented. By saving the results
of each task in non-volatile memory forward progress and data consistency can
be ensured. They are based on static task flows that can result in the risk of
task starvation as the scheduler will not advance any other task if the previous
one cannot be completed. To overcome this issue, Yildrim et al. [14] proposed
InK, a dynamic scheduler based on priorities and event triggers that is able to
adapt and react to changes in available energy. InK always tries to execute the
task with the highest priority, without considering energy availability, which can
result in task failure if the available energy depletes during the execution. To
address this, we presented an energy-aware task scheduler in our previous work
[2]. It is able to schedule tasks in an energy-aware fashion, taking into account
energy harvesting input, stored energy, and energy consumed by tasks, as well
as their priorities.

There are also some other energy-aware task scheduling approaches that have
been presented. In [17], AsTAR, an energy-aware task scheduler that rapidly
identifies optimum scheduling rates, supports heterogeneity and addresses envi-
ronmental dynamism ensuring extremely low-performance overhead in terms of

4

memory, execution time, and energy was presented. Karimi et al. [18] presented
an energy-aware scheduling framework to execute real-time periodic tasks with
atomic sensing operations, considering the Radio Frequency (RF) energy har-
vesting environment. Their periodic energy model may not cover all types of
energy-harvesting sources, which means that the framework cannot be applied
in all cases. In both cases, they focused on using supercapacitors, which are
not necessarily the most optimal solution for battery-less devices [19]. They
can reduce performance as they need more time to charge, decreasing the total
number of executed application cycles. Finally, Delgado et al. [3] presented
a theoretical analysis of an energy-aware task scheduling algorithm, while we
focused more on creating a scheduling framework that enables the deployment
of energy-aware scheduling algorithms on real battery-less IoT devices.

The energy-aware task scheduling algorithm presented in [2] is generic and
can be used with different technologies and applications, and integrated on dif-
ferent IoT platforms. Based on that, in this work, we consider some of its main
features: (i) required voltage thresholds are calculated for each application task,
(ii) task dependencies are developed in the form of the parent-child relationship,
(iii) task constraints such as repeat task and data availability are included, (iv)
task priorities are included where the task with the highest priority will always
be selected first if all set constraints are satisfied. In contrast to all mentioned
task schedulers, in this work, we have designed more intelligent solutions that
enable constrained IoT devices to make decisions locally instead of depending
on the more powerful edge and Cloud devices. In addition to traditional appli-
cation tasks, we include tinyML algorithms and tasks deployed on battery-less
IoT devices. This is the first work, where the scheduling of tinyML tasks in
an energy-aware manner is shown. Taking into account the energy-aware op-
timization algorithm, the scheduler is able to make the most optimal solution
between different inference strategies, respecting the accuracy, energy, and time
constraints.

2.2. TinyML on battery-less IoT devices
TinyML is a technology that allows the implementation of different resource-

constrained ML models and intelligent tasks locally on edge IoT devices, such
as battery-less low-power IoT devices. This offers devices the ability to process
and analyze data at the extreme edge and opens the possibility of employing
such devices for novel IoT applications, such as object or face detection, that
will replace traditional ones. This section describes prior art that focused on
the deployment of tinyML models on small embedded devices [15] [20].

Benninger et al. [21] proposed EdgeEye, a stand-alone edge computing de-
vice, capable of data-centric processing and performing machine learning infer-
ence on images captured with an ultra-low power camera. They presented the
integration of a tinyML model for people counting, where the final results of
the inference are transmitted using LoRaWAN. Prasanna et al. [22] presented
the implementation of gesture and speech recognition applications on the Ar-
duino Nano 33 BLE sense device. Both models were trained and deployed from
the Edge Impulse framework. Saffari and Tan et al. [23] presented a human

5

occupancy detection system that uses battery-free cameras and a DL model
implemented on a Raspberry Pi 4 Model B. Their camera harvests energy from
ambient light and transmits data to the receiver, the board on which detection
algorithm is implemented, using backscatter communication. All three men-
tioned papers are focused on implementing tinyML models on battery-powered
devices, while we consider a more resource-constrained battery-less IoT device
that uses a capacitor to store energy collected from its environment.

Giordano et al. [24] presented a battery-free smart camera for continuous
image processing that combines a tinyML algorithm for face identification, a
power management module with an energy harvester, buck converter, and a
capacitor, an energy harvesting circuit that can host a thermal and solar energy
harvester, and LoRa module for sending only the end result of local inference.
The device waits until the capacitor is fully charged in order to perform an
inference cycle. To avoid inference starting when the capacitor is not fully
charged, they implemented a cold start mechanism, which defines a threshold
above which charging becomes more efficient and the system should operate.
Their proposed algorithm was trained to identify five different persons on the
image, where they also studied the trade-off between consumed energy and
accuracy obtained based on the size of the captured image. The same author
proposed a similar system in [25]. They presented a use-case where a battery-
less sensor node performed a neural network-based facial recognition at the edge
on a CNN accelerator. Once the external trigger is activated, the device wakes
up and takes a picture via the integrated camera, which is later used as an input
to the neural network. When the local inference task is executed, the final result
is sent to a gateway using LoRa. A small battery-less computer vision platform
has been presented by Jokic et al. [10]. They used an ultra-low power image
sensor and an ML system-on-chip to recognize faces on images, achieving self-
sustainable operations by using solar energy harvesting with a small on-board
solar cell. If the face is identified, the display on the device is updated, and the
code is shown for the next 60 seconds. Their setup was only tested indoors.

All three mentioned solutions only considered the on-device intelligence,
where inference is performed locally and without the possibility of sending cap-
tured data to the Cloud, where a decision can be made remotely as well. In
the first two approaches, long-range communication technology was used just
for sending the final results of inference. In the last paper, the results were
automatically shown on the display of the board.

In contrast, our work allows the possibility of making decisions on both
parts, battery-less IoT devices, and the Cloud. We study the trade-off between
the energy consumption and the accuracy of inference results, analyzing under
which circumstances it is better to continue and make the decision locally or to
wait until the required amount of energy is collected for sending the data to the
Cloud where the higher accuracy model is deployed. We estimate the possible
latency that can occur in both cases, respecting the defined task deadlines.
Also, in our work, we consider an energy-aware task scheduler, which allows us
to intelligently schedule all defined tasks based on the available energy, avoiding
power failures and maintaining forward progress.

6

START

Enough

energy

YES

NO

EAS

Collect

data

REPEAT EVERY X
SECONDS

EAS

Process

data

EIA

Local

inference

Transmit

data

Inference

results

ACTION 1

NO

YES

ACTION 2 Transmit

results

EAS

YES Results
received

NO

Receive

results

BATTERY-LESS
IoT

DEVICE

EAS

CLOUD

Transmit

results

Receive

data

Remote

inference

Display

results

Remote

inference path

Local inference
path

Figure 1: System architecture demonstrating the deployment of an energy-aware IoT appli-
cation on the battery-less IoT device and decision-making process that can run locally or in
the Cloud depending on task schedules and energy availability. Both parts of the system, the
battery-less IoT device and the Cloud, can be connected via different wireless technologies.

3. System Architecture

In this section, the proposed system architecture that can be used for the
deployment of energy-aware IoT applications on battery-less IoT devices is pre-
sented. It consists of two main parts: (i) the battery-less IoT device and (ii)
the Cloud, which can be connected via different wireless technologies, such as
Bluetooth Low Energy (BLE) or LoRaWAN, as shown in Figure 1. The energy-
aware aspect of our approach is supported by integrating the energy-aware task
scheduler (EAS) on the battery-less IoT device. Based on the available energy
and required voltage thresholds that the device needs to reach, the scheduler
decides when to execute each application task. Based on the Energy-aware Infer-
ence Algorithm (EIA), the device is able to decide whether to perform inference

7

locally or to send the captured data to the Cloud for remote inference.

3.1. Energy-Aware Optimization Algorithm
The energy awareness of our approach is achieved by extending the energy-

aware task scheduler presented in our previous work [2]. It uses a task profile
to decide when the capacitor voltage is high enough to execute it, completely
avoiding power failures and maintaining forward progress. The energy-aware
IoT application is divided into atomic tasks characterized by an execution or-
der implemented in the form of a parent/child relationship. In this way, each
successor task in the flow will be connected with its predecessor, considering
the output from the previous task as its input. Each parent task can have one
or more dependent child tasks, which are selected only if their constraints (e.g.,
repeat task, data availability, comparison on output, etc.) are satisfied. As the
proposed scheduling approach is based on priorities as well, the task with the
highest priority will always be selected first if there are multiple candidate tasks
that satisfy deadlines and other defined constraints.

In this work, we study the trade-off between energy consumption and ac-
curacy, analyzing under which circumstances it is better to perform inference
locally, at the cost of some accuracy, or to send the data to the Cloud in order
to perform more accurate remote inference. If the local inference is selected,
the accuracy loss comes from the fact that the model running on the device
is a low-power version that has been pruned. Besides the energy consumption,
another important parameter for our studies is the total time τ the device needs
to perform the full inference path, starting with a local inference or data trans-
mission to the Cloud, and ending when results from the selected ML model are
confirmed on the IoT device by performing the defined action (cf. Figure 1).
The actuation part is defined as ACTION 1 and ACTION 2 in Figure 1, and can
be implemented in the form of turning on an LED once the inference results are
available on the device or other actions such as turning on the buzzer if a posi-
tive decision is made. Based on that, in our work, we also consider a trade-off in
terms of latency, taking into account the deadline tD before which results must
be confirmed on the device. To decide which of these two options is preferable
and can satisfy both, energy and timing constraints, at the same time, we define
an energy-aware inference algorithm, shown in Algorithm 1. Table 1 lists the
set of parameters used in our energy-aware optimization algorithm.

After the device completes the data processing task Tpr, the EAS will need
to select the next task among three possible ones (Lines 1-2). The collect data
task Tcol is its own child task, so it will be already in the task list T . The two
other tasks, local inference Tloc and data transmission Tdata, are child tasks of
the processing data task. One of these two tasks will be added to the list and
executed, but only if its energy and time constraints can be satisfied.

The total time (τloc(V0, Ih)) for the local inference path includes time values
of different states of the device (Line 3): tli is the time needed to perform
local inference, tact is the execution time of the defined action (ACTION 1 and
ACTION 2 in Figure 1), and t1 that represents the time needed to reach the
required voltage threshold V reqloc for the full inference path, starting with local

8

Table 1: Set of parameters of the energy-aware optimization algorithm

Parameter Definition
T = {Tcol, Tpr, Tloc, Tdata} Set of tasks to be executed

τ = {τloc, τdata} Set of times to execute inference path
t = {t1, t2,...., tn} Set of times to reach Vreq

Vreq = {V reqdata, V reqloc} Set of required voltage thresholds
V0 Initial voltage
Vc Measured capacitor voltage
Ih Harvesting current
tD Task deadline
tv Voltage check interval
tli Time to execute local inference
tact Time to execute defined action
ttx Time to send data to the Cloud
tcl Execution time in the Cloud
trx Time to receive results from the Cloud

Algorithm 1: Energy-aware optimization algorithm
1 if Tpr is completed then
2 Tcol, Tloc, Tdata;
3 τloc(V0, Ih) = t1 + tli + tact;
4 τdata(V0, Ih) = t2 + ttx + tcl + trx + tact;
5 if τloc and τdata ≤ tD then
6 Tdata ← highest priority task;
7 T← T ∪ {Tdata};
8 while Vc ≤ V reqdata and τdata ≤ tD do
9 sleep tv seconds;

10 end
11 if Vc ≥ V reqdata and τdata ≤ tD then
12 execute Tdata;
13 end
14 end
15 else if τloc ≤ tD and τdata > tD then
16 Tloc ← highest priority task;
17 T← T ∪ {Tloc};
18 while Vc ≤ V reqloc and τloc ≤ tD do
19 sleep tv seconds;
20 end
21 if Vc ≥ V reqloc and τloc ≤ tD then
22 execute Tloc;
23 end
24 end
25 else if τloc and τdata ≥ tD then
26 remove data;
27 Tcol ← highest priority task;
28 end
29 end

9

inference and ending when the appropriate action is performed. The first two
time values can be measured before the application starts, using one of the
available power profiling tools [26] [27]. The time value t1 can be calculated
using the mathematical model and equations presented in our previous work
[28]:

t1(V0, V reqloc, Is) = −ρ(Is)C ln(
V reqloc − Ihρ(Is)

V0 − Ihρ(Is)
) (1)

where Vt is replaced with V reqloc, V0 is the current voltage of the capacitor,
and Ih is the estimated harvesting current. The chosen capacitor size is rep-
resented as C, while the load resistance is modeled as a function ρ(Is). V0 is
the measured starting voltage from which the local inference path starts. Ih is
the harvesting current that can be estimated in three ways [2]: (i) worst case
estimation (Ih = 0) where the harvesting current can simply be estimated as
0, resulting in the longest possible waiting time until the threshold is reached,
(ii) perfect prediction (Ih = known) where the harvesting current is constant
and defined before the experiment starts, which makes the calculation much
easier, and (iii) predicted estimation, where the harvesting current is predicted
using a time-series prediction algorithm. While the worst-case prediction in-
creases the required voltage threshold of tasks and thus the time spent charging
the capacitor, it results in less power failures, which can occur if the predictor
over-estimates the harvesting current.

On the other hand, the total time (τdata(V0, Ih)) for the remote inference
path includes (Line 4): the time t2 needed to reach the required voltage thresh-
old V reqdata for this specific inference path, the execution time of data transmis-
sion (ttx), the total execution time in the Cloud tcl, the time the device needs to
receive remote inference results trx, and the action execution time tact. Similar
to the previous case, ttx, trx, and tact can be measured before the application
starts using power profiling tools. It must be noted that ttx and trx already
include the cost of possible network latency, considering the following 4 types
of delays: transmission delay, propagation delay, queuing delay, and processing
delay. The execution time in the Cloud (tcl) can be estimated by measuring the
inference time of the neural network algorithm running in the Cloud in advance.
Finally, t2 can be calculated based on Equation 2:

t2(V0, V reqdata, Is) = −ρ(Is)C ln(
V reqdata − Ihρ(Is)

V0 − Ihρ(Is)
) (2)

Based on the current capacitor voltage V0 and harvesting current Ih, the EIA
is able to calculate the time needed for the execution of both inference paths
and based on the obtained value select the optimal solution, respecting the
defined deadline tD. In case both solutions can be executed before the deadline
expires, the task with the highest priority will be selected and added to the task
list for execution (Lines 5-7). As the heavy-weight ML model deployed in the
Cloud can provide more accurate results, the remote inference path is given the
highest priority. In order to execute the full inference path in an energy-aware

10

manner, the required voltage threshold Vreq must be calculated, considering the
mathematical model and equations presented in our previous work [28]:

Vreq =
Vmin − Ihρ(Is)(1− e(

−ts
ρ(Is)C

))

e(
−ts

ρ(Is)C
)

(3)

where Vt is replaced with Vmin, the minimum operating voltage below which
the device is not able to stay on, and will shut down. In this case, the average
current consumption Is and execution time ts are measured for the full inference
path, which is considered as a one unit, as shown in Section 5. Starting at Vreq

(V reqloc and V reqdata), a safer execution of all tasks considered in one inference
path can be ensured.

The device will measure the capacitor voltage Vc at predefined intervals (i.e.,
every tv seconds) to check if the required voltage threshold Vreq of the selected
path is reached. As long as the capacitor voltage is below this value, the device
is in a deep sleep state to conserve energy (Lines 8-9). Once the capacitor
voltage is equal to or higher than the required threshold, and the selected path
can still be completed within the deadline, it will be executed. In this way, more
accurate results can be provided in case enough time and energy are available
to perform remote inference.

If the remote inference solution cannot be executed within the deadline, the
EAS will proceed with local inference. In this case, the local inference task will
be selected as the next highest priority task in the flow and added to the task
list (Lines 15-17). Similar to the first case, the local inference path will only
be executed if the required amount of energy is collected and execution can be
completed within the deadline. Finally, if none of the proposed solutions can be
completed within the defined deadline, the scheduler will remove the processed
data, and select the collect data task to be repeated again. In this way, data
freshness is ensured as the device will not work with expired data.

3.2. ML and TinyML Workflow
The main idea of our approach is to run two ML models, the low-power

tinyML model that can be deployed on the constrained battery-less IoT device,
and the heavy-weight ML model deployed in a Cloud data center. To prepare
both versions of the ML model, several phases are required, as shown in Figure 2.
The first phase is to build the ML model that will be capable of providing the
desired intelligence in our system architecture. Then, the next step is to train
the model on a computer or server using pre-collected training data. For this
purpose, typical ML frameworks such as TensorFlow, Edge Impulse, or Pytorch
can be used [29].

Once this step is done, the obtained model will be used in two ways. First,
the heavy-weight pre-trained ML model will be deployed on a Cloud server, as it
requires a lot of computational and memory resources. In this way, the remote
decision can be made by running the inference task in the Cloud. Second, the
obtained model will be optimized and converted into a tinyML model that has
inherited all the properties of the original one, but with reduced computational

11

BUILD TRAIN CONVERT INFERENCE
Pre-trained
ML model

TinyML
model

Pre-trained
ML model

DEPLOY

INFERENCE

Heavy-weight
ML model

IoT DEVICE

CLOUD

Figure 2: A neural network is trained based on prior datasets. The trained neural network is
deployed on the Cloud device but is too complex to run on constrained IoT devices. Through
pruning and quantization, a second tinyML network is created that can be run locally on the
IoT device, albeit at lower accuracy.

and memory overhead, and thus lower accuracy, so it can be executed on con-
strained IoT devices [29]. Once the model is deployed on the device, it becomes
able to perform local inference tasks based on the data it collects.

3.2.1. ML model optimization
Once the training process is done and the desired accuracy is achieved, the

heavy-weight ML model must be optimized before its deployment on the con-
strained IoT device (cf. Figure 2). We use a combination of several techniques
to convert the ML model into a form that can be run on an embedded device:

1. Knowledge Distillation (KD) - this is the technique of transferring
knowledge from a large model (teacher) or set of models to a small well-
optimized model (student) [30]. In this way, a small model will try to
collect all the necessary knowledge in order to solve the same task as a
larger model. The main goal of this technique is to transfer knowledge
with the minimum loss function, where the target is a distribution of class
probabilities provided by the softmax function used on the teacher side
[12]. This probability distribution assigns the highest probability to one
particular output, with all other probability classes close to 0. As this
result cannot provide much information, the distribution must be spread
across the class label, providing more targets that indicate which classes
the teacher found more similar to the predicted one [31]. The final student
model will be trained based on these values in order to achieve similar
accuracy as its teacher.

2. Pruning - pruning technique is used to convert a dense neural network to

12

a more sparse network, reducing the size of the network with limited loss
of accuracy [12]. It is an iterative process that uses a training model and
systematically removes weights that are below a defined threshold over a
different number of epochs [32]. If the pruned network cannot provide the
same accuracy as the dense network from which it is created, the retrain-
ing of the remaining weights will be performed. During the retraining
process, the pruned neurons without input and output connections will
be removed as well, reducing the total size of the network. De Leon et
al. [33] presented the depth pruning technique with an auxiliary network
that acts as a new head of the pruned model. Their technique is eas-
ily interpretable, requiring no special hardware support during inference.
Using their approach, the pruned model shares weights with the based
one, reducing the final model size, memory overhead, and accuracy loss,
which saves energy in constrained IoT devices and provide more accurate
on-device inference results.

3. Quantization - after finishing the distillation and pruning part, the next
step is to quantize the model, which will reduce the model size even more.
Quantization is the technique that reduces the numerical precision of a
network by converting higher precision values to lower ones [30]. The
weights and activations of the ML model are usually represented as 32-bit
or 64-bit floating-point values. By mapping these values down to 8-bit
integers, the precision of the ML algorithm is reduced to fit the MCU
architecture, enabling faster computation, lower power consumption, less
memory overhead, and deployment on different embedded platforms [32]
[12].

4. Deployment - the final step is to convert the optimized ML model into
a form readable on the embedded device. An interpreter, such as Tensor-
Flow Lite [34], is used to convert the ML model (i.e., the script written in
Python) into a file written in any language, typically C or C++, that is
understandable to the MCU. Finally, the tinyML model is deployed and
compiled on the embedded device, where it is used for local inference.

3.3. On-device local inference
The energy-aware IoT application that contains different tasks is imple-

mented on the device. The first task in the flow is collecting data, which can be
performed using a camera module or different types of sensors. The captured
data can be images, videos, or different sensing data such as temperature, hu-
midity, or pressure that is later used as input to the tinyML model implemented
on the device. This task is a periodic task and can be repeated every X seconds
if enough energy is available. Once the data is captured, it will be processed
and edited to be suitable as input for the ML model.

The required voltage thresholds for each application task must be calculated.
Based on the obtained values, the scheduler determines if enough energy is
collected for task execution. Using the optimization algorithm (Section 3.1),

13

the optimal solution between local inference and sending data to the Cloud will
be selected and executed. In case the decision is made locally, once the results
are ready, the device will confirm them by performing the defined action and
optionally sending the resulting output to the Cloud.

3.4. Cloud-based remote inference
Once the training phase is done (cf. Figure 2), the pre-trained heavy-weight

ML model will be deployed on a Cloud server. It will be running and waiting
for input data sent from the battery-less IoT device. If data is available, it will
be edited if necessary and passed to the model, where the remote decision will
be made. The final result will be sent back to the battery-less IoT device, based
on which it will perform the appropriate action. In this way, both parts of the
system, the battery-less IoT device, and the Cloud are connected and capable
of making decisions.

4. Prototype Implementation: Person Detection

As a proof of concept for our algorithms, this section describes our prototype
of an energy-aware IoT application implemented on a battery-less IoT device,
including all defined tasks and the order of their execution. A brief overview of
the used devices, divided into different subsystems, along with the deployment
on the Cloud is given. In the end, we explain how the ML model for person
detection is deployed on the battery-less IoT device and the Cloud.

4.1. Energy-aware IoT application
For evaluation purposes, we developed an energy-aware IoT application that

is able to decide whether or not a person is detected in a captured image. The
energy-aware application was deployed on the battery-less IoT device based on
the proposed system architecture (cf., Figure 1). It is composed of seven main
tasks. The first task in the flow is to capture the image using the connected
camera module. This is a periodic task that can be repeated every X seconds
if enough energy is available. Once the capturing task is done, the image is
decoded, converted into grayscale, and processed. Using the optimization al-
gorithm, the device will decide which type of inference is preferable at that
moment in time. If the decision is made locally, the result will be confirmed
by performing the defined action, which in our case is briefly turning on the
appropriate LED (i.e., green LED if the person is detected and red LED if it is
not), and optionally sent to the Cloud. Otherwise, the captured image will be
sent to the Cloud for remote inference. Once the final result is available, it will
be sent back to the battery-less IoT device where it will be confirmed by briefly
turning on the appropriate LED.

14

Arduino Nano
33 BLEArduCam module

Mosfets

Load Switch

Capacitor

Figure 3: Microcontroller subsystem consisting of two main parts, the microcontroller unit on
which the energy-aware IoT application and tinyML algorithms are running, and the ArduCam
camera module for capturing and processing images.

4.2. Microcontroller subsystem
The microcontroller subsystem consists of two main parts: (i) the micro-

controller unit (MCU), and (ii) the camera module connected to the MCU, as
shown in Figure 3. The Arduino Nano 33 BLE [35] was chosen, due to its sup-
port to execute tinyML models. It is a miniature-sized 3.3V compatible board,
based on the Nordic nRF52840 MCU [36] and running on ARM Mbed OS. The
board has 1MB CPU Flash and 256kB RAM memory, featuring a more powerful
processor compared to its predecessors, a 32-bit ARM Cortex-M4 CPU running
at 64 MHz. These technical specifications of the board, allow us to deploy and
run different types of neural networks, which convert the board into a more
intelligent unit capable of making decisions locally. Also, the board supports
serial and parallel interfaces such as serial peripheral interface (SPI) and inter-
integrated circuit (I2C) bus that are used for configuration and communication
with different sensing units such as the smart camera. From the communica-
tion perspective, the Arduino Nano 33 BLE supports BLE connectivity enabled
through the Arduino BLE library [37].

In order to be able to capture and process the image, we consider the Ardu-
cam Mini 2 Megapixels (MP) Plus camera module [38]. It is a high-definition SPI
camera that integrates a 2MP CMOS image sensor OV2640, providing minia-
ture size, an easy-to-use hardware interface and an open-source code library
[39]. The camera is connected to the Arduino Nano 33 BLE through differ-
ent SPI and I2C pins, which enable the sensor configuration and are used for
camera commands and data streams. There are also VCC and GND pins used
for powering the camera module. Once the camera task is executed, the cur-

15

rent continues to flow through these pins, which drastically increases the sleep
current consumption of the Arduino board (above 108mA). To solve this issue,
we added an additional Load Switch Evaluation Board (TPS22919EVM) [40]
that provides the current to the camera module only when the defined GPIO
pin is triggered. This resulted in around 100 times less current consumption
during the sleep state (around 1.14mA), which is more suitable for battery-less
IoT devices. Finally, the output of the camera is a JPEG 160x120 image that
is decoded as a sequence of Minimum Coded Units, which are 16x8 blocks of
pixels, and converted into grayscale.

To enable our Arduino Nano 33 BLE board to measure the voltage on the
capacitor and compare it to the calculated voltage threshold of each application
task, an additional voltage divider was added. Based on the obtained voltage
value, the energy-aware task scheduler will know if the task is ready to be
executed or the device needs to sleep more in order to collect enough energy. The
current consumption will increase, as the voltage measurement circuit contains
additional resistors. To reduce this, we used MOSFETS that act as circuit
switches. In this way, the harvested energy can be used better and the battery-
less IoT device can be modified to act in an energy-aware fashion.

4.3. Intelligent Power Management Unit
There are different types of Power Management Units (PMUs) available

in the market. PMUs have multiple roles in the circuit, from charging the
capacitor, the main energy storage of battery-less IoT devices, to regulating
the output voltage to the load and extracting maximum power from the energy
harvester (e.g., solar cell) [19]. As in our implementation, we consider a real
energy harvesting environment with solar panels that harvest ambient light
energy, there is a need to manage this incoming energy by using the appropriate
PMU.

The AEM10941 [41] is an integrated energy management circuit designed by
e-peas [42], for solar and thermal harvesters, that extracts DC power from up to
7-cell solar panels to simultaneously store energy in a rechargeable element (e.g.,
capacitor), after which it will be converted to a stable voltage to operate an MCU
and peripherals. This solution can supply the system with two independent
regulated voltages, the low-voltage output (LVOUT) which generates 1.2V or
1.8V, and the high-voltage output (HVOUT) which generates from 1.8V to 4.1V.
The board starts harvesting energy at 380mV with an input power of only 3µA.

The power management is performed using a single inductor boost/buck
regulator, with the aim to charge as much as possible energy from the solar
panel and store it in the capacitor. The capacitor charges only when its voltage
is lower than a specific value due to the implemented RG trigger circuit. When
the capacitor voltage reaches the turn-on threshold (Vturnon) the battery-less
IoT device is turned on and when its capacitor voltage drops below the turn-off
threshold (Vturnoff) the device is turned off [2].

There are three main pins that have to be used on the e-peas evaluation
board: (i) the BATT pin, which is the connection to the capacitor, (ii) the
SRC pin, which is the connection to the harvested energy source, and (iii) the

16

HVOUT/LVOUT pin that provides the output voltage to the connected device,
which is in our case the Arduino board.

Depending on the capacitor voltage, the board can be logically divided into
four different modes [2]:

i) Voltage below Vturnoff (Discharged), where the PMU only charges the
capacitor without providing supply to the MCU (LVOUT and HVOUT are
deactivated).

ii) Voltage between Vturnoff and Vturnon, where there are two possibilities.
First, when the capacitor charges from Vturnoff (Discharged), then the
PMU only charges the capacitor without providing supply, and the second
one, when the capacitor already reached Vturnon (Ready-Charged), then
the PMU provides the output voltage supply and charges the capacitor.

iii) Voltage between Vturnon and the maximum allowed (Vmax) (Charged),
where in the availability of harvesting current, the PMU charges the ca-
pacitor up to Vmax and continues supplying the output voltage.

iv) Voltage above Vmax (Overcharged), where the capacitor charging will be
deactivated and the output voltage supplying is continued.

4.4. Wireless communication subsystem
To establish the communication between the battery-less IoT device and

the IoT gateway, the wireless communication subsystem that supports a short-
range data transfer via BLE is considered. There are different reasons why this
technology is chosen for the communication part. We consider our prototype
implementation as an indoor battery-less solution where energy efficiency is one
of the key parameters and communication range is less of an issue. Also, the se-
lected wireless communication subsystem should support the transfer of different
amounts of data, from the simple message to the captured image. Taking all of
these into account, the only technology that supports the transfer of sufficiently
large amounts of data (i.e., captured image), enables short-range communication
without consuming too much energy, and is suitable for battery-less IoT devices,
is BLE. BLE is a wireless personal area network (WPAN) technology designed
by the Bluetooth Special Interest Group [43], which compared to Classic Blue-
tooth is intended to provide considerably reduced power consumption and cost
while covering a similar communication range. The main idea is to have two
types of devices: central devices that act as clients waiting to receive data, and
peripheral devices that are servers responsible for providing collected data from
different sensors. In our case, both the IoT device and the IoT gateway/Cloud,
can send and receive different types of data. The Arduino device turns on BLE
only if it needs to send or receive data. Once BLE is turned on, the device starts
advertising to let other devices, the IoT gateway in our case, know that it exists
and is ready to connect. These advertising packets contain a list of services the
device provides, based on which the connection can be established.

17

Receive
image/results

BLE

Process
image/results

Transmit
image/results

Receive
results

Transmit
results

BLE

IoT
GATEWAY

MQTT
BROKER

PUBLISH

SUBSCRIBE

PUBLISH

SUBSCRIBE

CLOUD

RabbitMQ RabbitMQ

Receive
results

Display

results

Receive
image

Remote
inference

Display
results

Transmit
results

Figure 4: IoT Gateway/Cloud implementation demonstrating the communication and
decision-making process for the image recognition application, running inference remotely
in the Cloud.

Once the connection is established, data can be sent or received. In our case,
the device can send two types of data, the captured image and the end result
of the inference. In the first case, the device will send the image and wait for
the response from the gateway. Once it receives data from the gateway, it will
disconnect and turn off BLE, reducing the total energy consumption. In the
second case, once the end result of the local inference is sent, the device will
disconnect and turn off BLE immediately. On the other hand, the gateway keeps
BLE constantly turned on, looking for new devices and waiting to be connected
with them. Using BLE, we are able to show that both parts of the system, the
battery-less IoT device and the Cloud, can be involved in the decision-making
process and chosen as an optimal inference solution under certain circumstances.

4.5. Gateway/Cloud subsystem implementation
Figure 4 shows the IoT gateway and Cloud implementation, which includes

all defined tasks that need to be performed once the data from the IoT device
is received. In order to receive data sent from the device via BLE, the Bleak
library [44] is installed on the gateway side. Bleak is a Generic Attribute Profile
(GATT) client software, capable of discovering and connecting to BLE devices
that act as GATT servers. It provides an asynchronous, cross-platform Python
API to connect and communicate with sensors or battery-less IoT devices. Us-
ing Bleak, our gateway is able to read, write, and get notifications and/or data
sent from the Arduino device. It can receive two types of data: the simple mes-
sage that contains the end result of the local inference performed on the device
or the captured image from the camera module connected to the Arduino board.
We developed a Python application that includes the Bleak library and enables
the gateway to receive both types of data. Once the data is received, it will be

18

processed and prepared to be sent to the Cloud. The transmission and reception
tasks are performed using the Message Queuing Telemetry Transport (MQTT)
protocol, an IoT communication protocol that was built as a super-lightweight
messaging transport suitable for linking faraway machines with minimal code
and network resources. The RabbitMQ clients [45] are deployed on both sides,
the IoT gateway and the Cloud, and are responsible for transmitting and re-
ceiving data to and from the MQTT broker.

The Cloud implementation is done by using Kubernetes Orchestration. A
Ubuntu-based docker image, which is expanded with the necessary libraries to
enable the intelligence and deployment of the ML model, is used. The docker
image is then run in the docker container deployed on Kubernetes. The data is
received in the Cloud via RabbitMQ. If it is just a simple message containing
the end results of local inference performed on the device, it will be immediately
shown in the console terminal. Otherwise, the captured image from the camera
module is used as input to our heavy-weight ML model used for making the
remote decision. Once the inference task is done, the final result will be displayed
and via RabbitMQ sent to the MQTT broker, from which it will be forwarded
back to the device.

4.6. Person detection models
In this work, we developed, deployed, and evaluated an energy-aware IoT

application able to detect whether a person is present or not on the captured
image. The person detection task is achieved by deploying a CNN on both parts
of the system, the battery-less IoT device, and the Cloud. The proposed CNN,
MobileNet V1, is a part of MobileNets [46]. MobileNets are a family of efficient
models for mobile and embedded applications, which enable the building and
deployment of lightweight deep neural networks. To train the model, the Visual
Wake Words dataset [47] containing images that belong to two classes, person
or not-person, was used. The training was performed on a server with a 16X
NVIDIA Tesla V100 GPU, 8-core Dual Intel Xeon Platinum 8168 CPU, and
16GB of Micron DDR4 LRDIMM RAM, considering around 40GB of data. As
the chosen dataset was large, consisting of around 40GB of data, we had to
use a machine that included 1 GPU, 8 CPUs, and 16GB RAM. The proposed
CNN has 28 layers, 26 depthwise separable convolutions, 1 fully connected layer
that is the first layer in the architecture, and 1 pooling layer. It uses ReLu
activation functions for all the layers except the last one which has a Softmax
activation function. Two important parameters that decrease the footprint of
the MobileNet model are the width multiplier α, which thins a network uni-
formly at each layer, and the resolution of the input data [46]. Based on that,
the proposed values of α=0.25 and 96x96 grayscale input images are chosen [48].
The other hyperparameters used to control how weights were updated during
the training process are shown in Table 2. The proposed architecture is based
on [46].

The neural network was trained using the TensorFlow framework, through
1 million epochs using the RMSprop [49] optimizer. Depending on the memory
requirements, the training process can be stopped earlier at the cost of some

19

Table 2: Hyperparameters used for training the neural network

Hyperparameter Value
Learning rate 0.045

Label smoothing 0.1
Learning rate decay factor 0.98

Number of epochs per decay 2.5
Moving average decay 0.999

Batch size 96

accuracy. Once the training is done, the results from the TensorFlow training
environment can be converted into a form that can be deployed on a tiny battery-
less IoT device. The heavy-weight model was converted and generated into a
TensorFlow Lite File [34] using int8 quantization. Finally, the TensorFlow Lite
File was converted into a C++ data array that can be easily deployed on the
embedded device. In this way, the heavy-weight person detection model, which
requires 3.3MB of memory, was converted into a 250KB model able to be run
on our Arduino Nano 33 BLE board. The described procedure follows the steps
proposed in [48].

After getting both ML models, the total number of required floating opera-
tions (FLOPs) for a single execution of the model can be calculated. Our results
showed the same number of FLOPs for both models (14.3M FLOPs). Based on
this number, it is easy to calculate the extensive multiply accumulate operations
(MAC) value:

MAC =
FLOPs

2
(4)

The difference between the heavy-weight and tinyML model is in the way
the weights are saved and calculated. Considering the heavy-weight ML model
deployed in the Cloud, these weights are saved and calculated using a float 32-bit
precision. In order to adapt this model to be suitable for an embedded device,
the float graph is converted to an integer 8-bit (int8) format. By mapping these
values down to 8-bit integers, the precision of the tinyML model is reduced with
an impact on model accuracy [50].

The accuracy of an ML model can be defined as the ratio of correct predic-
tions out of all predictions made by that algorithm and can be calculated as
follows [51]:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

where TP and TN are true positive and true negative outcomes when the
model correctly predicts the positive and negative class, and FP and FN are
false positive and false negative outcomes suggesting that the model incorrectly
predicts the positive or negative class.

We evaluated both models considering two approaches (cf., Figure 5). In the
first approach, we used the aforementioned dataset that was previously divided

20

76

85
82.36

95

Visual Wake Words Own dataset

 Evaluation datasets

0

10

20

30

40

50

60

70

80

90

100

 A
cc

u
ra

cy
 o

f
M

L
m

o
d
e
ls

 (
%

)

tinyML

Heavy-weight ML

Figure 5: Evaluation of both ML models considering existing and own datasets

into training (67.05%) and validation (31.95%) datasets [47]. The fully-trained
heavy-weight ML model achieved an accuracy of 82.36%. On the other hand,
the tinyML model achieved a lower accuracy of 76%. For the second approach,
we considered real-time evaluation. In this case, we ran the energy-aware IoT
application on the battery-less device and used the captured images from the
Arducam camera module as input for both models. The used dataset consists of
20 images that have been divided into 2 datasets, 10 person and 10 not-person
images. The device showed the outcome of its local inference calculation using
an LED (i.e., green if the person is detected on the captured image and red if it
is not) that blinked once the local inference was performed. On the other hand,
once the image was captured, it was sent to the Cloud as well where the remote
inference was performed and the result displayed on the screen. The results
showed an accuracy of 85% for the tinyML model and 95% for the heavy-weight
ML model deployed in the Cloud. Compared to the existing dataset, both
models showed better accuracy results when our own dataset was used due to
the much smaller number of tested samples.

5. Device and Application Profiling

To perform energy-aware scheduling, the current consumption (Is) and ex-
ecution time (ts) of the different states of the device, such as capturing and
processing an image, transmitting and receiving data, or performing local in-
ference, are required. In this section, we provide a brief overview of the used
device and application profiling methodology to get the current consumption
and execution time of different states of the device, as well as the actual results.
These values were obtained with a Nordic Power Profiler Kit II [26], a standalone
unit that can measure the current levels of different devices, providing a voltage
supply between 1.6V and 5.5V. The real experiments, measurements, and vali-
dation of our approach were performed using the Arduino Nano 33 BLE board

21

Table 3: Current consumption and time values of the Arduino Nano 33 BLE board

AVG ± STD Worst Case
State Current draw Execution time Current draw Execution time

Camera task 112.68±0.55 mA 1039.6±5.32 ms 113.31 mA 1049 ms
Transmit image

&
Receive results

4.24±0.014 mA 7990.2±74.15 ms 4.26 mA 8157 ms

Local inference 4.246±0.017 mA 647.84±3.49 ms 4.27 mA 653.2 ms
Transmit results 4.247±0.02 mA 4379.2±19.49 ms 4.29 mA 4399 ms
Blinking LED 1.771±0.011 mA 507.6±1.21 ms 1.79 mA 509.9 ms
Voltage check 0.436±0.029 mA 3.35±0.34 ms 0.513 mA 3.884 ms

Sleep - - 1.14 mA -

(cf., Section 4.2) on which an energy-aware IoT application for person detec-
tion was implemented. The Arduino Nano 33 BLE board operates in low-power
mode, decreasing the total current consumption and enabling the energy-aware
IoT application to run battery-less.

The low-power consumption on the Arduino Nano 33 BLE board can be en-
abled through different steps. First, the MPM3610 step-down voltage regulator
used to convert the 5V voltage supply to 3.3V must be disconnected by cutting
the solder jumper (SJ1) on the bottom of the board. Second, turning off the
power LED, sensors, and the I2C pull-up resistors will decrease the current be-
low 1mA. Finally, disabling the Universal Asynchronous Receiver/Transmitter
(UART0) port will save an additional 500µA, which results in around 280µA of
sleep current in the end.

Table 3 shows the average current consumption and duration for different
states of the Arduino Nano 33 BLE board measured at 3.3V, the voltage at
which the device will run with the e-peas power management board. The average
values ± standard deviation (AVG ± STD) and maximum values (Worst Case)
of current consumption and execution time for different states of the device
were obtained based on 30 repeated measurements. In our experiments, the
worst-case energy consumption and execution time values were considered by
the scheduler in order to ensure that the device will not turn off after task
execution due to unexpected peaks in energy consumption.

The highest energy cost task is the camera task, which includes two parts:
capturing and processing an image. The processing part of this task includes
different subtasks such as image decoding, converting into grayscale, and editing
for ML models. Once this task is done, the device goes into a sleep state
consuming around 1.14mA when the BLE module is added, and around 920µA
without considering the communication part. This can be achieved by adding
the additional load switch evaluation board (cf., Section 4.2) that acts as a
switch and stops providing the current to the camera module once the defined
GPIO pin is triggered. There are two different BLE tasks: (i) Transmit image,
which enables the transmission of the captured image to the Cloud and Receive
results, which enables the reception of remote inference results, and (ii) Transmit
results, which enables the transmission of local inference results to the Cloud.

22

0 500 1000

 Time (ms)

0

50

100

150
 C

u
rr

e
n
t

co
n
su

m
p
ti

o
n
 (

m
A

)

m
1

m
2

(a) Camera task

0 2000 4000 6000 8000 10000

 Time (ms)

0

5

10

15

 C
u
rr

e
n
t

co
n
su

m
p
ti

o
n
 (

m
A

)

m
1

m
2

(b) BLE image transfer

0 200 400 600 800

 Time (ms)

1

2

3

4

5

 C
u
rr

e
n
t

co
n
su

m
p
ti

o
n
 (

m
A

)

m
1

m
2

(c) Local inference

0 1000 2000 3000 4000 5000

 Time (ms)

0

5

10

15

 C
u
rr

e
n
t

co
n
su

m
p
ti

o
n
 (

m
A

)

m
1

m
2

(d) BLE result transfer

0 200 400 600

 Time (ms)

1

1.5

2

2.5

3

3.5

4

 C
u
rr

e
n
t

co
n
su

m
p
ti

o
n
 (

m
A

)

m
1

m
2

(e) Blinking LED

0 0.2 0.4 0.6 0.8 1

 Time (ms)

0

1

2

3

4

 C
u
rr

e
n
t

co
n
su

m
p
ti

o
n
 (

m
A

)

m
1

m
2

(f) Voltage measurement

Figure 6: Example of measured current consumption and execution time for different states
of the Arduino Nano 33 BLE board (cf., Table 3)

The BLE module is turned on only when one of these two tasks is selected for
execution. Otherwise, it is turned off to keep the current consumption lower.
When one of two BLE tasks is selected to be executed and the BLE module
is ready, the device will start polling and advertising, until a BLE connection
with the gateway is established and transmission/reception of packets can start.
The reception of inference results from the Cloud was implemented as a callback
function on the Arduino device. This function will be automatically called every
time remote inference results are available to be received. Based on this and the
absence of the slave latency feature in the Arduino BLE library, after sending the
image to the Cloud, the device must keep the BLE connection active until the
remote results are received. Once all packets are sent or received, the device will
disconnect from the gateway, turn off the radio, and go to a sleep state. Both
BLE tasks are time-costly, requiring more than 8 seconds for image transmission
and results reception, and 4.4 seconds to send inference results while consuming
4.26mA and 4.29mA on average respectively. The output from the camera
task can also be used as input to the tinyML model deployed on our device.
In this case, the decision will be made locally, which draws a similar current,
but executes 10 times faster than remote inference (4.27mA for 653ms). Once
this task is done, the final results will be confirmed by briefly turning on the
appropriate LED. The example of the current drawn and duration for different
states of the Arduino Nano 33 BLE board is shown in Figure 6.

Taking into account the mathematical optimization algorithm presented in
Section 3.1, the device is able to choose whether to make the decision locally
or to send data to the Cloud, where remote inference will be performed. There

23

(a) LI path (b) LI+S path

0 2000 4000 6000 8000

 Time (ms)

0

5

10

15

20

 C
u
rr

e
n
t

co
n
su

m
p
ti

o
n
 (

m
A

)

B
li
n

k
in

g
 L

E
D

S
le

e
p

S
le

e
p

m
1

m
2

m
3

m
4

Transmit image Rx

(c) RI path

Figure 7: Measured current consumption and execution time for inference paths considered
by EIA

are two possible inference paths: (i) a local inference (LI) path that starts with
the local inference task, after which the result is confirmed by briefly turning on
the appropriate LED (cf., Figure 7a), and optionally transmitting the inference
result (LI+S) to the Cloud (cf., Figure 7b), and (ii) a remote inference path
(RI) that starts with the image transfer to the Cloud, after which the result
from the remote inference will be received on the device and confirmed again
in the same way, turning on the appropriate LED (cf., Figure 7c). Based on
that, we measured the current consumption and execution time of full inference
paths, where the considered tasks are performed one after the other, without
additional energy checks. We then use these values in order to calculate the
required voltage thresholds that can ensure the successful execution of the full
inference paths (i.e., without the device powering down). The local inference
path consists of only two tasks, local inference and blinking LED, and requires
1.17 seconds for completion, consuming on average less than 3.5mA. In case
the final inference result is sent to the Cloud, the total current consumption
and execution time of this inference path will increase up to 4.1mA and 5.47
seconds on average respectively. On the other hand, the remote inference path
consists of three tasks on the device and remote inferencing on the Cloud. It
takes more time for execution (8.66 seconds), consuming a little more than 4mA
on average. It must be noted that we do not include the camera task as part of
these inference paths, as it is executed separately first, and is required for both
considered inference paths.

As we consider energy awareness in our approach, there are three additional
parts that can also have an impact on the total current consumption of the
device. The energy-aware task scheduler adds some extra operations, such as
(i) selecting the task with the highest priority to be executed. (ii) removing
it from the task list once it is finished, and (iii) occupying new places in the
task list by adding all dependent child tasks related to the executed one. The
optimization algorithm (Section 3.1) will also add some extra consumption as
the device needs to calculate the total execution time for both possible solutions,
local and remote inference, and based on that chooses the most optimal one.
Finally, before each task execution, the device needs to measure the voltage on
the capacitor in order to check if the required voltage threshold is satisfied. As

24

in our case, the device cannot directly read the capacitor voltage, an additional
voltage divider with resistors is used to enable this (cf., Section 4.2). This results
in an additional 513µA for 3.88ms every time the voltage measurement task is
called, without including the influence of the energy-aware task scheduler and
optimization algorithm.

6. Results and Discussion

In this section, we present the results and validation of our hardware-software
prototype described in Section 4, which enables person detection on battery-less
IoT devices. Based on the defined IoT application, Cloud implementation, and
manually set configuration of the e-peas power management board, we have
performed different experiments, considering different parameters and taking
into account the real energy harvesting environment, to validate our proposed
solution. For the experiments, we have considered two main approaches: (i)
constant harvesting current and voltage during the full time of the experiment
where a controllable setup with artificial light is used, and (ii) dynamic har-
vesting current and voltage that changes over time due to unpredictable natural
sunlight intensity.

6.1. Controlled experiments with artificial light source
In this approach, we considered the known harvesting current for calculating

the required voltage thresholds of application tasks, which is constant for the
full time of each individual experiment. We assumed that the value of the
harvesting current was perfectly determined and does not change over time.

In order to design a controllable setup and perform experiments considering
different configurations, we used an artificial light placed at some distance above
the solar panel. As a light source, a Philips Hue White A21 bulb attached to a
plastic dark box, offering a powerful 1600-lumen output, was used. A Panasonic
AM-5608 [52] solar panel that consists of 6 amorphous silicon solar cells was
considered. Using the voltage divider, presented in Section 4.2, the Arduino
Nano 33 BLE board is able to measure the capacitor voltage and compare it
with the required threshold. Once the obtained voltage value reaches the defined
threshold, the task will be executed. Otherwise, the device goes into a sleep
state for a predefined time interval, after which it will check again if enough
energy is available. Finally, the e-peas power management board is added to:
(i) charge the capacitor, (ii) regulate the output voltage to the board, and (iii)
extract the maximum power from the solar panel. The designed setup used in
our experiments can be seen in Figure 8.

Table 4 lists the general parameters used in our experimental setup when
the constant harvesting current is used. The maximum allowed voltage Vmax is
equal to 4.5V, above which the capacitor voltage cannot increase anymore. The
battery-less device will turn on when the voltage threshold, Vturnon, of 3.92V is
reached. The turn-off voltage, below which the device cannot operate is set to
3.6V. The output voltage of the e-peas power management board to our battery-
less IoT device is configured to 3.3V. We chose to test three different capacitor

25

MCU setup
Mosfets

Capacitor

Philips light
bulb

Solar panel

PMU

Load Switch

Figure 8: Controllable experimental setup with artificial light source including a Panasonic
AM-5608 solar panel and microcontroller subsystem

Table 4: Experimental setup for the constant harvesting current approach

Parameter Symbol Value
Max Voltage Vmax 4.5 V

Turn-on Voltage Vturnon 3.92 V
Turn-off Voltage Vturnoff 3.6 V
Supply voltage Voutput 3.3 V
Capacitance C {0.5, 1, 1.5} F

Harvesting Current Ih {2, 4, 6} mA
Experiment duration Texp 1800 s

Minimum image capture periodicity tcam 10 s

sizes (i.e., 0.5F, 1F, and 1.5F) in combination with three different harvesting
currents (i.e., 2mA, 4mA, and 6mA). It must be noted that the used capacitors
can operate under temperatures between -40◦C and +85◦C, which enables our
experimental setup to properly work even under extreme temperature conditions
[53]. If we convert considered harvesting currents into the light intensity of our
bulb, it will result in 19%, 34%, and 45% respectively. Finally, the experimental
run lasted 30 minutes for all experiments.

For this approach, we considered three strategies: (i) local inference (LI)
where the device performs only the local inference, confirming the result by
briefly turning on the appropriate LED, (ii) local inference with sending results
(LIS) where the device performs the local inference, again confirming the result
by briefly turning on the appropriate LED, but also sends that result to the
Cloud via BLE, and (iii) remote inference (RI) where the device sends the
captured image to the Cloud for remote inferencing, waiting to receive the final
result, which will be confirmed by briefly turning on the appropriate LED.

26

Each of these strategies was implemented and tested on the battery-less de-
vice separately. In order to fairly compare them, the experimental setups with
the same configuration parameters (e.g., harvesting current, capacitor size, etc.)
were considered in all three possible approaches. The main goal of these exper-
iments was to analyze the trade-off between the accuracy of inference results
and the energy consumption of the device when different inference strategies are
implemented.

In our experiments, we have followed the behavior of the device considering
different inference strategies in terms of the average time needed to complete the
full application cycle (cf., Figure 9), starting with charging the capacitor until
the required voltage threshold of the camera task, which is the first task in the
flow, is reached and ending when inference results are confirmed on the battery-
less IoT device (LI and RI) or sent to the Cloud (LIS). From the obtained values,
the total number of completed application cycles for the defined experimental
time can be calculated.

In all considered cases, the LI strategy shows the best performance in terms
of execution speed (cf., Figure 9a, 9b and 9c). This is due to the fact that
the local inference path consumes less current (cf., Figure 7a) compared to the
other two approaches (cf., Figure 7b and 7c). It must be noted that in the
LI approach, the BLE communication module is not used as the device will
confirm the inference results by turning on the appropriate LED with which
the application cycle will end. In this way, the sleep current can be reduced
from 1.14mA to 900µA, which results in faster charging of capacitors, especially
when higher harvesting currents such as 4mA and 6mA are considered. On the
other hand, using the LIS inference strategy, the local inference path can start
at the same voltage threshold as with the LI, but once results are available and
confirmed, they also need to be sent to the Cloud. This additional task will start
only when its voltage threshold is reached, which will prolong the duration of
one application cycle. Finally, considering the RI approach, after capturing an
image, the device needs to collect enough energy to send that image, and then
wait to receive and confirm the inference result from the Cloud. This result
in longer charging of capacitors, which in the end affects the duration of an
application cycle.

From our results, it can be observed that the harvesting current impacts the
final results in all three considered cases. As the harvesting current increases, the
device needs less time to collect enough energy to perform all tasks in the cycle,
which eventually decreases the average time needed for one cycle completion.
For the LI approach, this is a reduction from 426 to 106 and 55 seconds, or
75.12% and 87.09% respectively, when a capacitor of 0.5F is used. Taking into
account two other inference strategies, the total reduction is even higher (above
95% for 6mA harvesting current when using the RI approach), but still not
enough to show better performance compared to the LI approach.

As the capacitor size increases, the average time needed for execution of the
full application cycle is shorter (cf., Figure 9b and 9c). Intuitively, we expected
that using smaller capacitors would reduce charging time and result in more
application cycles, but this is not the case. The reason for this behavior is that

27

426

106
55

1284

149

69

1482

155

73

2 4 6
Harvesting current (mA)

0

500

1000

1500

A
v
e
ra

g
e
 t

im
e
 t

o
 c

o
m

p
le

te
 a

 f
u
ll

a
p
p
lic

a
ti

o
n
 c

y
cl

e
 (

s)

LI
LIS
RI

(a) C = 0.5F

416

105
52

1231

141
67

1337

142
71

2 4 6
Harvesting current (mA)

0

500

1000

1500

A
v
e
ra

g
e
 t

im
e
 t

o
 c

o
m

p
le

te
 a

 f
u
ll

a
p
p
lic

a
ti

o
n
 c

y
cl

e
 (

s)

LI
LIS
RI

(b) C = 1F

400

101
49

895

120
64

1281

139
70

2 4 6
Harvesting current (mA)

0

500

1000

1500

A
v
e
ra

g
e
 t

im
e
 t

o
 c

o
m

p
le

te
 a

 f
u
ll

a
p
p
lic

a
ti

o
n
 c

y
cl

e
 (

s)

LI
LIS
RI

(c) C = 1.5F

Figure 9: Average time needed for execution of the full application cycle considering different
inference strategies, capacitor sizes, and harvesting currents

28

a smaller capacitor, 0.5F in our case, requires a much higher voltage threshold for
each defined application task, which in turn results in a longer charging time.
In contrast, with larger capacitors such as 1F and 1.5F, the required voltage
threshold of the highest energy-cost task (i.e., the camera task) in both cases is
lower and the device can reach it faster. Once this task is executed, the device
will sleep until the next threshold is reached, which will also be lower compared
to when a 0.5F capacitor is used. However, the difference in time between
application cycle executions for the different capacitor sizes, considering the
same harvesting currents, is quite low. This means that the capacitor size does
not have a huge impact on the final results regarding the number of successfully
performed application cycles. For example, considering the LI approach, the
average time needed for the completion of the one cycle decreases from 426
to 416 and 410 seconds when the harvesting current of 2mA is used. This is
a reduction of 2.35% and 3.76% respectively, which is negligible. For higher
harvesting currents such as 4mA and 6mA, the gain is even lower (e.g., only
0.94% improvement for LI with 4mA going from 0.5F to 1F).

Finally, to summarize, the LI inference strategy is much faster compared to
the other two approaches, which in the end results in more successfully executed
application cycles. For example, the LI approach can execute twice as frequently
as LIS, and 3 times as frequently as RI, when a harvesting current of 2mA and
a capacitor of 1.5F are used. However, as shown in Section 4.6, the accuracy
of local inference is significantly lower than remote inference. As such, a trade-
off occurs that should take into account both energy availability and timing
constraints. This will be investigated in Section 6.2.

6.2. Realistic experiments with natural light
In the second approach, we considered a realistic harvesting environment

with natural light, where the harvesting current and voltage vary over time. For
these experiments, the same setup shown in Figure 8 was used, except the light
bulb and box were removed, and natural light was taken into account instead.
Table 5 lists the general parameters used in our experiments when the dynamic
harvesting current is considered. For the e-peas power management board, the
same configuration as in Section 6.1 is used, where Vmax is equal to 4.5V, Vturnon

is 3.92V, and the turn-off voltage below which the device cannot operate is set
to 3.6V. The output voltage of the e-peas power management board to our
connected battery-less IoT device is configured to 3.3V. The battery-less device
is equipped with a 1.5F capacitor. The experimental run lasted 8 hours for all
considered cases.

For this approach, we did not test three different inference strategies sep-
arately. In contrast, two inference strategies, the local inference path, and
the remote inference path are deployed together. The experimental setup was
placed on the windowsill of two separate rooms in the east and west direction in
Antwerp, Belgium. The energy-aware optimization algorithm (cf., Section 3.1)
was used to dynamically determine which of the two strategies to execute, with
the task deadline tD set to 28 and 40 seconds for east and west-side setups
respectively. The task deadline values were determined based on the measured

29

Table 5: Experimental setup for the dynamic harvesting current approach

Parameter Symbol Value
Max Voltage Vmax 4.5 V

Turn-on Voltage Vturnon 3.92 V
Turn-off Voltage Vturnoff 3.6 V
Supply voltage Voutput 3.3 V
Capacitance C 1.5 F

Experiment duration Texp 8 h
Minimum image capture periodicity tcam 10 s

harvesting currents. In order to calculate the required voltage thresholds, the
worst-case scenario (Ih = 0) is considered.

Figure 10 shows the capacitor voltage changes (CAP) when the battery-
less IoT device (BLD) executes different application tasks, including one of two
available inference paths (LI and RI), with a solar panel placed in the east and
west direction. The cumulative number of executed inference paths is equal to
the full number of completed application cycles that start with the camera task
and end when the inference result is confirmed on the BLD. The experiments
have been performed on the 10th and 11th of November 2022 on the east and
west side respectively. In both cases, the day was sunny with short cloudy
periods, and the sun rose at 07:51 and set at 17:00 [54]. It can be observed that
the east-side BLD (cf., Figure 10a) turned on and reached the first required
voltage threshold (i.e., the required voltage threshold of the camera task) faster
than the west-side BLD (cf., Figure 10b) due to the fact that it receives more
light during the morning hours. Between 9:00 and 10:00, and 10:20 and 11:00,
the device was able to collect more than enough energy to perform all tasks in
the application cycle. During this period, the capacitor maintained the voltage
Vmax for almost the full time, which resulted in more remote than local inference
paths. The remote inference paths could be completed before the task deadline,
respecting the time constraint, and trading off the higher current consumption
for more accurate results. It must be noted that two voltage drops have been
observed during this period (before 12:20), which is due to clouds that covered
the sun and decreased the harvesting current. While the sun was moving to
the west, the harvesting current decreased, resulting in more local than remote
inference paths. As the local inference strategy was only able to satisfy the
time constraint, the higher accuracy of results was traded-off for lower current
consumption and shorter execution time. In the end, the east-side BLD executed
111 application cycles, of which 65 remote and 46 local inference paths (cf.,
Figure 10a).

On the other hand, the harvesting current was almost constant for the full
time of the experiment (around 2.55mA) when the BLD was placed on the west
side (cf., Figure 10b). The capacitor maintained a voltage between 3.65V and
4.05V for most of the time, allowing the device to perform more local inference
paths, as the remote inference strategy was not able to satisfy the set time
constraint. After 14:00, the device started to receive more light as the sun

30

08:20 10:20 12:20 14:20 16:20
 Time of the day (h)

1

2

3

4

5

 C
a
p
a
ci

to
r

v
o
lt

a
g
e
 (

V
)

0

50

100

150

 C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

e
xe

cu
te

d
 i
n
fe

re
n
ce

 p
a
th

s

CAP
LI
RI
APP

(a) East-Side BLD

08:20 10:20 12:20 14:20 16:20
 Time of the day (h)

1

2

3

4

5

 C
a
p
a
ci

to
r

v
o
lt

a
g
e
 (

V
)

0

50

100

150

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

e
xe

cu
te

d
 i
n
fe

re
n
ce

 p
a
th

s

CAP
LI
RI
APP

(b) West-Side BLD

Figure 10: Capacitor voltage behavior (CAP, 1.5F) over time and cumulative number of
executed inference paths (APP) with a solar panel placed at east and west side windows.
The battery-less IoT device (BLD) is able to execute local (LI) or remote inference path (RI)
depending on the energy-aware optimization algorithm decision.

moved more to the west. This resulted in the more frequent selection of the
remote inference path, due to more energy being available (between 14:00 and
16:00). Finally, the west-side BLD was able to execute 94 application cycles, of
which 54 local and 40 remote inference paths (cf., Figure 10b).

Considering the west-side approach, the device executed a lower number of
application cycles compared to the east-side due to: (i) a longer charging time
until the device turned on and reached the required voltage threshold to start the
application cycle, and (ii) a lower harvesting current for the almost full time of
the experiment, which resulted in longer waiting times until the required voltage
thresholds were reached. The lower harvesting current affected the number of
completed remote inference paths as the west-side BLD mainly performed the
local inference strategy (15% more compared to the east-side BLD). On the
other hand, the east-side BLD had peaks where the voltage was equal to the
maximum value, enabling faster application cycle execution. This affected the
number of selected local inference paths as the device was able to perform a
remote inference strategy before the deadline as well. For example, the east-
side BLD executed almost 40% more remote inference paths compared to the
west-side BLD. Finally, it must be noted that experiments have been performed
during the late autumn period when days are shorter and the power of sunlight
is lower compared to the spring or summer time during which the device would
harvest more energy and be able to perform its tasks more frequently.

7. Conclusions

In this article, we presented a system architecture that enables the energy-
aware deployment and management of tinyML algorithms on constrained battery-
less IoT devices. Our solution consists of two main parts, the battery-less IoT
device on which the light-weight tinyML model is running, and the Cloud where

31

the heavy-weight model is developed, trained, and deployed. We proposed an
energy- and deadline-aware inference scheduling algorithm, considering different
harvesting conditions under which it is better to make the decision locally or
to send data to the Cloud for remote inference. To validate our approach, we
developed an energy-aware IoT application capable of detecting a person on the
captured image and designed a Cloud and hardware prototype on which the
necessary intelligence can be deployed.

First, based on a controllable setup with artificial light, we evaluated our ap-
proach, considering three different inference strategies. Our results showed that
the local inference strategy without sending results to the Cloud performs best
in terms of the average time needed for one application cycle in all considered
cases. Considering a harvesting current of 2mA and a capacitor of 1.5F, the
local inference strategy is able to execute application cycles 3 times more fre-
quently compared to the remote inference strategy but at some cost of accuracy,
as the less accurate tinyML model is used for inferencing.

In the second case, we considered a dynamic harvesting environment based
on natural light, where the harvesting current changes over time. Taking into
account the real harvesting current measurements, we defined the required dead-
line before the inference result must be confirmed on a battery-less IoT device.
Based on that, our energy-aware optimization algorithm decides which of the
two proposed inference strategies is more suitable for certain harvesting condi-
tions, respecting accuracy, energy, and time constraints.

There are two main potentials that we note from this work: (i) a generic
system architecture and a mathematical formulation that can be applied to
similar use cases, and (ii) sustainability benefit, which comes from the fact that
the system depends solely on harvested energy. In this work, we considered
an example application where our solution is able to detect whether a person
is present or not in the captured image. This was just a proof of concept
to evaluate and demonstrate that our approach works. There are other cases
where our solution can be integrated, such as remote monitoring applications
where battery-less IoT devices are hard to reach and require an extremely long
lifetime. A potential field of deployment can be an image-based security system
or people-counting applications at events with less opportunities for fixed power
sources such as festivals. One of these fields can also be related to the natural
sciences where our solution can make the detection and counting of different
species much easier through the image recognition model [55]. In the end, by
optimizing operations on battery-less IoT devices, we take steps towards a more
sustainable IoT. This results in lower ecological and economic impact, bringing
us a bit closer to the idea of wider battery-less IoT device usage.

Declaration of competing interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

32

Acknowledgments

Part of this research was funded by the Flemish FWO SBO S001521N
IoBaLeT (Sustainable Internet of batteryless Things) project.

References

[1] S. S. Sabry, N. A. Qarabash, and H. S. Obaid, “The road to the internet of
things: a survey,” in 2019 9th Annual Information Technology, Electromechanical
Engineering and Microelectronics Conference (IEMECON), pp. 290–296, 2019.

[2] A. Sabovic, A. K. Sultania, C. Delgado, L. D. Roeck, and J. Famaey, “An energy-
aware task scheduler for energy harvesting battery-less iot devices,” IEEE Internet
of Things Journal, pp. 1–1, 2022.

[3] C. Delgado and J. Famaey, “Optimal energy-aware task scheduling for batteryless
iot devices,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2021.

[4] A. Singh and P. Ponde, “Home automation: Iot,” in International Conference on
Intelligent Emerging Methods of Artificial Intelligence & Cloud Computing (F. P.
García Márquez, ed.), (Cham), pp. 244–252, Springer International Publishing,
2022.

[5] D. Raposo, A. Rodrigues, S. Sinche, J. Sá Silva, and F. Boavida, “Industrial iot
monitoring: Technologies and architecture proposal,” Sensors, vol. 18, no. 10,
2018.

[6] F. John Dian, R. Vahidnia, and A. Rahmati, “Wearables and the internet of things
(iot), applications, opportunities, and challenges: A survey,” IEEE Access, vol. 8,
pp. 69200–69211, 2020.

[7] S. Bose, B. Shen, and M. L. Johnston, “A batteryless motion-adaptive heartbeat
detection system-on-chip powered by human body heat,” IEEE Journal of Solid-
State Circuits, vol. 55, no. 11, pp. 2902–2913, 2020.

[8] C. Delgado, J. M. Sanz, C. Blondia, and J. Famaey, “Batteryless lorawan commu-
nications using energy harvesting: Modeling and characterization,” IEEE Internet
of Things Journal, vol. 8, no. 4, pp. 2694–2711, 2021.

[9] N. N. Alajlan and D. M. Ibrahim, “Tinyml: Enabling of inference deep learning
models on ultra-low-power iot edge devices for ai applications,” Micromachines,
vol. 13, no. 6, 2022.

[10] P. Jokic, S. Emery, and L. Benini, “Battery-less face recognition at the extreme
edge,” in 2021 19th IEEE International New Circuits and Systems Conference
(NEWCAS), pp. 1–4, 2021.

[11] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy aware
edge computing: A survey,” Comput. Commun., vol. 151, p. 556–580, feb 2020.

[12] L. Dutta and S. Bharali, “Tinyml meets iot: A comprehensive survey,” Internet
of Things, vol. 16, p. 100461, 10 2021.

33

[13] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently powered
batteryless sensors,” in Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems, SenSys ’17, (New York, NY, USA), Association for
Computing Machinery, 2017.

[14] K. S. Yildrim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester,
“Ink: Reactive kernel for tiny batteryless sensors,” in Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’18, (New York, NY,
USA), p. 41–53, Association for Computing Machinery, 2018.

[15] S. Lee, B. Islam, Y. Luo, and S. Nirjon, “Intermittent learning: On-device machine
learning on intermittently powered system,” Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 3, dec 2019.

[16] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution without check-
points,” Proc. ACM Program. Lang., vol. 1, October 2017.

[17] F. Yang, A. S. Thangarajan, G. S. Ramachandran, W. Joosen, and D. Hughes,
“Astar: Sustainable energy harvesting for the internet of things through adaptive
task scheduling,” ACM Trans. Sen. Netw., vol. 18, oct 2021.

[18] M. Karimi, H. Choi, Y. Wang, Y. Xiang, and H. Kim, “Real-time task scheduling
on intermittently powered batteryless devices,” IEEE Internet of Things Journal,
vol. 8, no. 17, pp. 13328–13342, 2021.

[19] A. K. Sultania and J. Famaey, “Batteryless bluetooth low energy prototype with
energy-aware bidirectional communication powered by ambient light,” IEEE Sen-
sors Journal, vol. 22, no. 7, pp. 6685–6697, 2022.

[20] Y. Zhao, S. S. Afzal, W. Akbar, O. Rodriguez, F. Mo, D. Boyle, F. Adib, and
H. Haddadi, “Towards battery-free machine learning and inference in underwater
environments,” in Proceedings of the 23rd Annual International Workshop on Mo-
bile Computing Systems and Applications, HotMobile ’22, (New York, NY, USA),
p. 29–34, Association for Computing Machinery, 2022.

[21] S. Benninger, M. Magno, A. Gomez, and L. Benini, “Edgeeye: A long-range
energy-efficient vision node for long-term edge computing,” in 2019 Tenth Inter-
national Green and Sustainable Computing Conference (IGSC), pp. 1–8, 2019.

[22] R. Prasanna, V. S. P J, N. Mohan, V. v, and A. Ramachandra, “Implementa-
tion of tiny machine learning models on arduino 33 - ble for gesture and speech
recognition,” Xi’an Jianzhu Keji Daxue Xuebao/Journal of Xi’an University of
Architecture & Technology, vol. XIV, pp. 160–169, 07 2022.

[23] A. Saffari, S. Y. Tan, M. Katanbaf, H. Saha, J. R. Smith, and S. Sarkar, “Battery-
free camera occupancy detection system,” in Proceedings of the 5th International
Workshop on Embedded and Mobile Deep Learning, EMDL’21, (New York, NY,
USA), p. 13–18, Association for Computing Machinery, 2021.

[24] M. Giordano, P. Mayer, and M. Magno, “A battery-free long-range wireless smart
camera for face detection,” in Proceedings of the 8th International Workshop on
Energy Harvesting and Energy-Neutral Sensing Systems, ENSsys ’20, (New York,
NY, USA), p. 29–35, Association for Computing Machinery, 2020.

34

[25] M. Giordano and M. Magno, “A battery-free long-range wireless smart camera
for face recognition,” in SenSys ’21: The 19th ACM Conference on Embedded
Networked Sensor Systems, Coimbra, Portugal, November 15 - 17, 2021, pp. 594–
595, ACM, 2021.

[26] N. Semiconductor, “Power profiler kit ii - nordicsemi.com.” https://www.nordic
semi.com/Products/Development-hardware/Power-Profiler-Kit-2, 2022.

[27] Keysight, “N6705b dc power analyzer, modular, 600 w, 4 slots [discontinued] |
keysight.” https://www.keysight.com/be/en/product/N6705B/dc-power-ana
lyzer-modular-600-w-4-slots.html, 2022.

[28] A. Sabovic, C. Delgado, D. Subotic, B. Jooris, E. De Poorter, and J. Famaey,
“Energy-aware sensing on battery-less lorawan devices with energy harvesting,”
Electronics, vol. 9, no. 6, 2020.

[29] R. Sanchez-Iborra, “Lpwan and embedded machine learning as enablers for the
next generation of wearable devices,” Sensors, vol. 21, no. 15, 2021.

[30] V. Rajapakse, I. Karunanayake, and N. Ahmed, “Intelligence at the extreme edge:
A survey on reformable tinyml.” https://arxiv.org/abs/2204.00827, 2022.

[31] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work.” https://arxiv.org/abs/1503.02531, 2015.

[32] S. Gupta, D. S. Jain, B. Roy, and A. Deb, “A TinyML approach to human activity
recognition,” Journal of Physics: Conference Series, vol. 2273, p. 012025, may
2022.

[33] J. D. De Leon and R. Atienza, “Depth pruning with auxiliary networks for tinyml,”
in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3963–3967, 2022.

[34] TensorFlow, “Tensorflow lite | ml for mobile and edge devices.” https://www.te
nsorflow.org/lite, 2022.

[35] Arduino, “Nano 33 ble | arduino documentation.” https://docs.arduino.cc/ha
rdware/nano-33-ble, 2022.

[36] N. Semiconductor, “nrf52840 dk - nordicsemi.com.” https://www.nordicsemi.c
om/Products/Development-hardware/nrf52840-dk, 2021.

[37] Arduino, “arduino-libraries/arduinoble: Arduinoble library for arduino.” https:
//github.com/arduino-libraries/ArduinoBLE, 2022.

[38] ArduCam, “Arducam mini 2mp plus - ov2640 spi camera module for arduino uno
mega2560 board & raspberry pi pico - arducam.” https://www.arducam.com/pr
oduct/arducam-2mp-spi-camera-b0067-arduino/, 2022.

[39] ArduCam, “Arducam/arduino: This is arducam library for arduino boards.” ht
tps://github.com/ArduCAM/Arduino, 2022.

[40] T. Instruments, “Tps22919evm evaluation board | ti.com.” https://www.ti.com
/tool/TPS22919EVM, 2022.

35

https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.keysight.com/be/en/product/N6705B/dc-power-analyzer-modular-600-w-4-slots.html
https://www.keysight.com/be/en/product/N6705B/dc-power-analyzer-modular-600-w-4-slots.html
https://arxiv.org/abs/2204.00827
https://arxiv.org/abs/1503.02531
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://docs.arduino.cc/hardware/nano-33-ble
https://docs.arduino.cc/hardware/nano-33-ble
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://github.com/arduino-libraries/ArduinoBLE
https://github.com/arduino-libraries/ArduinoBLE
https://www.arducam.com/product/arducam-2mp-spi-camera-b0067-arduino/
https://www.arducam.com/product/arducam-2mp-spi-camera-b0067-arduino/
https://github.com/ArduCAM/Arduino
https://github.com/ArduCAM/Arduino
https://www.ti.com/tool/TPS22919EVM
https://www.ti.com/tool/TPS22919EVM

[41] e-peas semiconductors, “Aem10941 solar harvesting | photovoltaic energy harvest-
ing | e-peas.” https://e-peas.com/product/aem10941/, 2022.

[42] e-peas semiconductors, “Energy harvesting | making devices energy autonomous
| e-peas.” https://e-peas.com/, 2022.

[43] B. S. working group, “Bluetooth technology overview | bluetooth® technology
website.” https://www.bluetooth.com/learn-about-bluetooth/tech-overvie
w/, 2022.

[44] H. Blidh, “bleak.” https://bleak.readthedocs.io/en/latest/, 2022.

[45] RabbitMQ, “Mqtt plugin — rabbitmq.” https://www.rabbitmq.com/, 2023.

[46] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” ArXiv, vol. abs/1704.04861, 2017.

[47] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, “Visual wake
words dataset,” arXiv preprint arXiv:1906.05721, 2019.

[48] TensorFlow, “Person detection training.” https://github.com/tensorflow/tf
lite-micro/blob/main/tensorflow/lite/micro/examples/person_detection
/training_a_model.md, 2022.

[49] TensorFlow, “models/train_image_classifier.py at master·tensorflow/models.” ht
tps://github.com/tensorflow/models/blob/master/research/slim/train_i
mage_classifier.py, 2022.

[50] J. Fontaine, A. Shahid, B. Van Herbruggen, and E. De Poorter, “Impact of em-
bedded deep learning optimizations for inference in wireless iot use cases,” IEEE
Internet of Things Magazine, vol. 5, no. 4, pp. 86–91, 2022.

[51] Nomidl, “What is precision, recall, accuracy and f1-score?.” https://www.nomidl
.com/machine-learning/what-is-precision-recall-accuracy-and-f1-score
/, 2022.

[52] Panasonic, “Amorphous silicon solar cells amorphous photosensors.” https://pa
nasonic.co.jp/ew/psam/, 2022.

[53] D.-K. Electronics, “Dgh155q5r5, cornell dubilier / illinois capacitor, electric dou-
ble layer capacitors (edlc), supercapacitors.” https://www.digikey.co.uk/en/p
roducts/detail/illinois-capacitor/DGH155Q5R5/7387513, 2023.

[54] TensorFlow, “Antwerp, belgium historical weather.” https://www.worldweather
online.com/antwerp-weather-history/be.aspx, 2022.

[55] J. Schoelynck, P. Loon, R. Heirmans, S. Jacobs, and H. Keirsebelik, “Design and
testing of a trap removing chinese mitten crabs (eriocheir sinensis , h. milne
edwards, 1853) from invaded river systems,” River Research and Applications,
vol. 37, 04 2020.

36

https://e-peas.com/product/aem10941/
https://e-peas.com/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://bleak.readthedocs.io/en/latest/
https://www.rabbitmq.com/
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/person_detection/training_a_model.md
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/person_detection/training_a_model.md
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/person_detection/training_a_model.md
https://github.com/tensorflow/models/blob/master/research/slim/train_image_classifier.py
https://github.com/tensorflow/models/blob/master/research/slim/train_image_classifier.py
https://github.com/tensorflow/models/blob/master/research/slim/train_image_classifier.py
https://www.nomidl.com/machine-learning/what-is-precision-recall-accuracy-and-f1-score/
https://www.nomidl.com/machine-learning/what-is-precision-recall-accuracy-and-f1-score/
https://www.nomidl.com/machine-learning/what-is-precision-recall-accuracy-and-f1-score/
https://panasonic.co.jp/ew/psam/
https://panasonic.co.jp/ew/psam/
https://www.digikey.co.uk/en/products/detail/illinois-capacitor/DGH155Q5R5/7387513
https://www.digikey.co.uk/en/products/detail/illinois-capacitor/DGH155Q5R5/7387513
https://www.worldweatheronline.com/antwerp-weather-history/be.aspx
https://www.worldweatheronline.com/antwerp-weather-history/be.aspx

	Introduction
	Related Work
	Battery-less task scheduling
	TinyML on battery-less IoT devices

	System Architecture
	Energy-Aware Optimization Algorithm
	ML and TinyML Workflow
	ML model optimization

	On-device local inference
	Cloud-based remote inference

	Prototype Implementation: Person Detection
	Energy-aware IoT application
	Microcontroller subsystem
	Intelligent Power Management Unit
	Wireless communication subsystem
	Gateway/Cloud subsystem implementation
	Person detection models

	Device and Application Profiling
	Results and Discussion
	Controlled experiments with artificial light source
	Realistic experiments with natural light

	Conclusions

