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Abstract—This paper focuses on leveraging a mobile edge com-
puting (MEC) server at an access point (AP) to address the delay
and reliability sensitivity requirement of multi-user machine-
type communication (MTC). By offloading tasks to the MEC
server, latency for low-power MTC devices can be minimized.
Meanwhile, intelligent reflecting surfaces (IRSs) are supported
to facilitate robust offloading, enhance spectrum efficiency, and
improve coverage by influencing incident radio-frequency wave
propagation via modifying the phase shifts with passive reflecting
components. Therefore, we investigate joint radio resource allo-
cation and edge offloading decision optimization in a multi-user
IRS-assisted MEC network, wherein a multi-antenna AP receives
information symbols from a set of Internet of Things (IoT) users
with short packet transmission. In particular, we minimize the
system’s power utilization subject to offloading MTC-enabled
IoT users’ quality of service (QoS) requirements, transmit power
feasibility, capacity limitation, and IRS phase shift. The non-
convex nature of the formulated problem poses a challenge to
solving it effectively. To address this, we propose an efficient
iterative algorithm based on successive convex approximation
(SCA) and a penalty-based approach for handling unit-modulus
constraints in the presence of passive reflecting elements at the
IRS. Simulation results demonstrate the superior performance
of our algorithm compared to other baseline schemes.

Index Terms—Intelligent reflecting surface (IRS), mobile edge
computing (MEC), machine-type communication (MTC), short
packet transmission.

I. INTRODUCTION

IN RECENT years, the rapid development of Internet of
Things (IoT) use cases has led to the emergence of

computation-intensive and latency-sensitive applications such
as autonomous driving, augmented reality, virtual reality, and
unmanned aerial vehicles [1]–[3]. These applications aim to
enable real-time interactions between machines and humans or
between machines themselves, that is, machine-type commu-
nication (MTC). To support these applications, the next gener-
ation of wireless networks, i.e., the 6th generation (6G), must
accommodate many IoT devices for real-time computation,
communication, and control.

Due to cost and size considerations, IoT devices are often
constrained by limited battery capacity and low-performance
processors. Consequently, a critical challenge in future IoT
networks is how to enhance the computational capability of
IoT devices to handle intensive computation loads with strict
latency requirements [4]. Although cloud computing, with
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its rich computational resources, has traditionally been the
solution, it may introduce significant computational latency
due to the remote locations of cloud servers [5]. Therefore, for
mission-critical and time-sensitive applications like healthcare,
autonomous driving, and the tactical internet, ultra-reliable
and low-latency communication (URLLC) has emerged as
a promising IoT service category for meeting future net-
work’s reliability and latency requirements [6]. In this context,
URLLC can achieve decoding error targets lower than 10−5

and latency constraints as low as 1 ms. However, the traditional
Shannon capacity formula may not suffice within the short
packet regime of URLLC-assisted IoT systems [7].

To further tackle the challenges of computational latency in
IoT networks, mobile edge computing (MEC) is considered
as another promising solution to mitigate network congestion
and significantly decrease latency compared to cloud comput-
ing [8]. By deploying servers at the network edge, such as
cellular base stations (BSs) or WiFi access points (APs), MEC
enables the direct offloading of data and computational tasks
from IoT devices to the MEC server, effectively enhancing
the quality of experience for the end users [9]. In MEC
systems, tasks can be classified into different categories based
on their dependencies and partitionability, leading to two
typical computation-offloading modes: partial offloading and
binary offloading. Binary offloading necessitates complete lo-
cal execution or offloading of computations, unlike partial of-
floading, which allows for segmented execution. These modes
involve optimizing computation and communication resource
allocations to minimize energy consumption [10], computa-
tion latency [11], [12], maximize computation rate [13], and
improve energy efficiency [14]. However, wireless channel
attenuation between APs and devices can degrade task offload-
ing efficiency [15]. To overcome this limitation, the massive
multiple-input multiple-output (MIMO) technique has been
employed to enhance the efficiency of task offloading in MEC
systems [16].

While massive MIMO boosts the offloading efficiency of
MEC systems, it is hindered by high energy and hardware
costs. To overcome these, the intelligent reflecting surface
(IRS) is a cost-effective solution proposed to enhance spectral
and energy efficiency in next-generation mobile networks [17].
An IRS is a digitally-controlled meta-surface, consisting of
an IRS controller and numerous affordable passive reflecting
elements. It does not need any radio-frequency (RF) chains. By
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smartly tweaking the phase shifts of each IRS element through
the IRS controller, it can dynamically alter the wireless
propagation environment to achieve various design goals, like
signal enhancement or interference reduction [7], [18], [19].
The IRS also offers a pathway to enhance the task offloading
efficiency of the MEC network due to its considerable passive
beamforming gain. By strategically situating IRSs near IoT
devices, it is possible to effectively counteract significant sig-
nal attenuation due to distance or the non-line-of-sight (NLoS)
condition, thereby appreciably extending the service coverage
of MEC. This is integral to unlocking the full potential of
MEC in offering high computational capabilities for future
IoT networks [20].

In this paper, our focus is on the joint uplink (UL) resource
allocation design. The key contributions are as follows:

• We study a novel joint radio resource allocation and edge
offloading decision optimization in an IRS-assisted MEC
network, where a multi-antenna AP receives information
symbols from a set of MTC-enabled IoT users with
finite block length transmissions. In particular, a resource
allocation algorithm is designed to minimize the system’s
power consumption subject to peak transmit power fea-
sibility and QoS constraints considering the interference.

• The formulated problem is non-convex and mixed integer
non-linear programming (MINLP). To address this and
find a suboptimal solution, we employ successive convex
approximation (SCA) and a penalty-based approach to
tackle the unit-modulus constraints because of passive
reflecting elements at the IRS.

• The simulation results reveal that deploying IRS along
with multi-antenna AP can realize low latency and high
reliability in MEC-assisted systems with MTC IoT users.

This paper is organized as follows: Section II introduces
the system and channel models. Section III formulates the
proposed resource allocation problem. The resource allocation
algorithm design policy is presented in Section IV. Section V
evaluates the performance of the proposed schemes using com-
puter simulations, and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PERFORMANCE METRIC

This section presents the system and channel models in
the IRS-assisted frequency division multiple access (OFDMA)
MEC system for IoT users with short packet lengths. In
particular, we consider a single-cell multi-user UL commu-
nication that comprises an AP associated with a MEC server,
equipped with NAP antennas, as shown in Fig. 1. To provide
edge computing services, the AP receives UL transmissions
from K single antenna IoT users, indexed by k with the
set of K = {1, . . . ,K}, directly or via an IRS. The IRS
is composed of M passive reflecting elements characterized
by their phase shifts and amplitudes. Let’s define Φ =
diag(β1e

jα1 , β2e
jα2 , ..., βMejαM) as the reflection-coefficients

matrix at the IRS, where βm ∈ [0, 1] and αm ∈ (0, 2π],
∀m ∈ {1, ...,M} are the reflection amplitude1 and phase shift

1For reflection efficiency maximization, the amplitudes of all passive
elements are assumed to be one [21] i.e., βm = 1, ∀m.
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Fig. 1. Multi-user IRS-assisted MEC system with one AP, and K IoT users
with finite block length transmissions. The single-antenna MTC-enabled users
offload their tasks to a MEC server, either directly or via IRS, utilizing a multi-
antenna AP.

of the m-th reflection coefficient at the IRS, respectively. The
bandwidth is divided into N orthogonal sub-carriers indexed
by N = {1, . . . , N}. The bandwidth of each sub-carrier is
Bs, leading to a symbol duration of Ts =

1
Bs

. The UL frame
is divided into L time slots indexed by L = {1, 2, ..., L}.
To obtain a performance upper bound, perfect channel state
information (CSI) of the entire system is assumed to be
available at the AP. We assume that the delay requirements
of all users are known at the AP, and only users whose delay
requirements can potentially be met in the current resource
block—made up of L time slots and N sub-carriers—are
admitted into the system. Each user has one computation task
(Bk, Dk) that needs to be processed, where Bk is the task
(or input data or bitstream) size in bits and Dk is the delay
deadline in time slots (also known as service delay).

A. Signal and Channel Models

Each IoT user transmits its own UL signal. The received
signal at the AP in time slot l and subcarrier n is given by:

y[l, n] =

K∑
k=1

√
pk[l, n](F[n]Φhk[n] + gk[n])uk[l, n] + z[l, n],

(1)
where hk[n] ∈ CM×1 and gk[n] ∈ CNAP×1 are the IRS-
user and AP-user channel vectors of the k-th user. Also,
F[n] ∈ CNAP×M , Φ ∈ CM×M , uk[l, n] ∈ C, and pk[l, n] are
the AP-IRS channel matrix, phase shift matrix of the IRS,
transmit symbol of user k on subcarrier n in time slot l,
and the power of user k on subcarrier n and time slot l,
respectively. Furthermore, z[l, n] ∈ CNAP×1 is the received
noise vector at the AP with CN (0, σ2INAP), and we assume
E{|uk[l, n]|2} = 1, ∀k, l, n. The received signal vector on
n-th subcarrier via adopting receive beamforming is given by:

ũ[l, n] = ℸH [l, n]y[l, n], ∀l, ∀n, (2)
where ℸ[l, n] ∈ CNAP×K is a matrix whose k-th columns are
given by [wk[n]] ∈ CNAP×1,∀k, l. As a result, the signal-to-
interference-plus-noise-ratio (SINR) of user k on subcarrier n
in time slot l can be expressed as:

γk[l, n] =
∥wH

k [n]h̄k[n])∥2pk[l, n]∑K
j ̸=k ∥wH

k [n]h̄j [n])∥2pj [l, n] + σ̃2
, ∀k, l, n, (3)



where h̄k[n] = F[n]Φhk[n] + gk[n], ∀k, l, n, and σ̃2 =
σ2∥wH

k [l, n]∥2, ∀k, l.

B. Achievable Rate with Short Packet Transmission

By revisiting the SINR formula in (3), it is now possible
to compute the achievable data rate for each IoT user. In
MTC-enabled systems, low-latency wireless communication
requires the use of finite and short blocklengths. The precise
approximation for the achievable rate of each user can then
be expressed as follows:

Rk(pk,Φ,xk) = F (pk,Φ,xk)−G(pk,Φ,xk), ∀k, (4)
where

Fk(pk,Φ,xk) =

L∑
l=1

N∑
n=1

log2(1 + xk[l, n]γk[l, n]), ∀k, (5)

Gk(pk,Φ,xk) = Q−1(ϵk)

√√√√ L∑
l=1

N∑
n=1

xk[l, n]Vk[l, n], ∀k. (6)

The subcarrier assignment indicators xk[l, n] in (5) and (6)
determine whether subcarrier n in time slot l is assigned to
user k. If assigned, xk[l, n] = 1, otherwise xk[l, n] = 0.
The optimization variables pk[l, n],∀l, n and xk[l, n],∀l, are
collected in pk and xk respectively. Additionally, the decoding
error is denoted by ϵk, the channel dispersion by Vk[l, n],
and Q−1(·) represents the inverse of the Gaussian Q-function.
The channel dispersion Vk[l, n] is calculated as Vk[l, n] =
a2
(
1 − (1 + γk[l, n])

−2
)
, where a = log2(e). To meet the

user’s delay requirements, all symbols of user k are assigned
to the first dk time slots, i.e., xk[l, n] = 0,∀l > dk.

C. Offloading Decision

Let’s define sk as the binary variable indicator for edge
binary offloading decisions. In particular, if sk = 1, user
k offloads its processing task; otherwise, the task would be
done locally. In order to guarantee the QoS of IoT user k,
its service delay Dk should not exceed a given acceptable
threshold, Tmax, in each time slot. Here, we assume that the
time needed for data processing is short, and the response time
delay is negligible. When IoT users choose to execute the data
locally, the central processing unit (CPU) power consumption
becomes the primary factor. This power consumption consists
of dynamic power, short circuit power, and leakage power [22].
In [23], the authors demonstrated that at the optimal CPU
frequency, the minimum power consumption of the CPU is
directly proportional to (Bk

Dk
)c, where c denotes the power

scaling factor. Therefore, we adopt the following model to
estimate the power consumption of local execution:

E loc
k = (1− sk)ß̂

(Bk)
c

(Dk)c
, ∀k, (7)

where ß̂ is a constant value that depends on the application
parameter. On the other hand, IoT users have the option to
offload their data to the edge server in the UL when necessary.
Therefore, the IoT user’s offloading transmission power for
sending data to the edge server can be stated as follows:

Eofl
k =

∑
l∈L

∑
n∈N

skxk[l, n]pk[l, n] + skpcir, ∀k, (8)

where pcir is the constant circuit power consumption during
transmission. Consequently, the total power consumption of
the system in the UL is represented by the sum of local and
offloading power consumption, given by:

Etotal =
∑
k∈K

(
Eofl
k + E loc

k

)
. (9)

III. POWER MINIMIZATION PROBLEM FORMULATION

In this section, we construct a joint problem of resource
allocation and offloading decision with the goal of minimiz-
ing the total power consumption while satisfying the QoS
requirements of MTC-enabled IoT users with short packet
length transmission. In particular, we focus on optimizing
the UL transmit power, the phase shift of the IRS, the
subcarrier assignment, and offloading decision. To this end,
the optimization problem is formulated as follows:
P1 : min

p,Φ,s,x
Etotal (10)

s.t. : Dk ≤ skTmax, ∀k, (10a)
L∑

l=1

N∑
n=1

xk[l, n]pk[l, n] ≤ skpk,max,∀k, (10b)

|Φm,m| = 1, ∀m, (10c)
xk[l, n] = 0, ∀l > dk,∀k,∀n, (10d)
K∑

k=1

xk[l, n] ≤ 1, ∀l, n, (10e)

sk ∈ {0, 1}, ∀k, (10f)
xk[l, n] ∈ {0, 1}, ∀k, l, n. (10g)

In the problem formulation, the variables p, x, s, and Φ
represent collections of optimization variables. These variables
are utilized to optimize the system performance and make
decisions related to power allocation, subcarrier assignment,
offloading decisions, and phase shifts of the IRS elements, re-
spectively. In P1, the constraint (10a) ensures that the delay in
offloading tasks from each user to the edge computing does not
exceed the given threshold Tmax. The constraint (10b) limits
the transmit power of each user to be within the maximum
power budget pmax. The constraint (10c) imposes the unit
modulus constraint on the IRS elements. The constraint (10d)
is the user’s delay requirements. The constraint (10e) indicates
that each subcarrier can only be assigned to one user. Lastly,
the constraints (10f) and (10g) represent the binary nature of
the subcarrier assignment and offloading decision variables.

The problem P1 is a challenging non-convex mixed integer
non-linear problem (MINLP) with interdependent optimiza-
tion variables, non-convex phase shift constraints, and binary
variables. Solving such non-convex optimization problems
optimally is a complex task. However, we propose an efficient
algorithm using the successive convex approximation (SCA)
method. Moreover, we design a penalty-based approach to
tackle the unit-modulus constraints because of passive reflect-
ing elements at the IRS. Our solution is polynomial-time sub-
optimal yet computationally efficient.



IV. JOINT SOLUTION OF THE OPTIMIZATION PROBLEM

We begin our solution design framework by converting the
delay threshold constraint (10a). This transformation is crucial
as it allows for more tractable analysis. Since each user’s
data rate is determined by two key parameters, the size of its
bitstream and the delay it experiences, the achievable data rate
as per (4) corresponds to: Rk(pk,Φ,xk) =

Bk

Dk
. Accordingly,

the equivalent form of P1 can be stated as:
P2 : min

p,Φ,s,x
Etotal (11)

s.t. : Rk(pk,Φ,xk) ≥ skBk, ∀k, (11a)
(10b) − (10g).

The transformed constraint, (11a), guarantees the offloading
traffic for each user k is at least Bk bits. Secondly, to
address the challenge posed by the multiplication of two
binary variables in P2, we introduce sk as a maximum value
constraint on xk[l, n], that is, xk[l, n] ≤ sk. This simplifies the
term skxk[l, n] to xk[l, n]. Hence, the optimization problem
stated in equation P2 can be reformulated as:

P3 : min
p,Φ,s,x

Ētotal =
∑
k∈K

(
Ēofl
k + E loc

k

)
(12)

s.t. :

L∑
l=1

N∑
n=1

pk[l, n] ≤ pk,max,∀k, (12a)

L∑
l=1

pk[l, n] ≤ skpk,max,∀k, n, (12b)

xk[l, n] ≤ sk,∀k, l, n, (12c)
(10b) − (10g), (11a),

where Ēofl
k =

∑
l∈L

∑
n∈N xk[l, n]pk[l, n] + skpcir, ∀k.

To overcome the non-convexity of multiplying xk[l, n] and
pk[l, n], we introduce a new variable p̃k[l, n] = xk[l, n]pk[l, n].
Using the big-M formulation [24], we add new constraints into
P3 to manage this non-convex term as follows:

P4 : min
p,p̃,Φ,s,x

Ẽtotal =
∑
k∈K

(
Ẽofl
k + E loc

k

)
(13)

s.t. : R̃k(pk, p̃k,Φ,xk) ≥ skBk, ∀k, (13a)
L∑

l=1

N∑
n=1

p̃k[l, n] ≤ skpk,max, ∀k, (13b)

p̃k[l, n] ≤ xk[l, n]pk,max, ∀k, n, l, (13c)
p̃k[l, n] ≤ pk[l, n], ∀k, n, l, (13d)
p̃k[l, n] ≥ pk[l, n]− (1− xk[l, n])pk,max,∀k, n, l, (13e)
p̃k[l, n] ≥ 0, ∀k, n, l, (13f)
(10c) − (10g), (12a) − (12c),

where Ẽofl
k =

∑
l∈L

∑
n∈N p̃k[l, n] + skpcir, ∀k. Moreover,

R̃k(pk, p̃k,Φ,xk) = F̃k(pk, p̃k,Φ,xk)− G̃k(pk, p̃k,Φ,xk),
where

γ̃k[l, n] =
∥wH

k [n]h̄k[n])∥2p̃k[l, n]∑K
j ̸=k ∥wH

k [n]h̄j [n])∥2p̃j [l, n]+σ̃2
,∀k, l, n, (14)

F̃k(pk, p̃k,Φ,xk) =

L∑
l=1

N∑
n=1

log2(1 + γ̃k[l, n]), ∀k, (15)

G̃k(pk,p̃k,Φ,xk)=aQ
−1(ϵk)

√√√√ L∑
l=1

N∑
n=1

(1−(1+γ̃k[l, n])−2),∀k.

(16)
Furthermore, p̃k represents the collection of optimization
variables p̃k[l, n],∀l, n. Next, we relax the integer variables
by converting them into continuous variables within the range
of zero to one. We then impose the following constraints on
the optimization problem to define the feasible regions:

P5 : min
p,p̃,Φ,s,x

Ẽtotal + λ1(

K∑
k=1

sk − s2k)

+ λ2(

K∑
k=1

L∑
l=1

N∑
n=1

xk[l, n]− xk[l, n]
2) (17)

s.t. : 0 ⩽ sk ⩽ 1, ∀k, l, (17a)
0 ⩽ xk[l, n] ⩽ 1, ∀k, l, n, (17b)
(10c) − (10e), (12a) − (12c), (13a) − (13f).

where λ1 and λ2 are penalty factors that need to be greater
than one. We now transform the SINR function in (14) into
a mathematically tractable form to optimize the phase shifts.
By adopting semidefinite programming (SDP), we have:

∥wH
k [n]h̄k[n]∥2 = Tr

(
Uk[n]ΥUH

k [n]Wk[n]
)
, (18)

where Uk[n] =
[(

FH [n]diag(hH
k [n])

)T

g∗
k[n]

]T
, Wk[n] =

wk[l, n]w
H
k [l, n], Υ = ϖϖH ∈ C(M+1)×(M+1), ϖ =

[ϱT κ]T ∈ C(M+1)×1, where κ ∈ C is a dummy variable
with |κ|2 = 1, and ϱ = [ejα1 , ejα2 , . . . , ejαM ]H ∈ CM×1. To
disentangle the complexity and facilitate the solution of P5,
we introduce a set of auxiliary variables χk[l, n],∀k, l, n, to
establish a lower bound on the SINR as defined in equation
(14), that is:

0 ≤ χk[l, n] ≤ γ̃k[l, n] ≜
Ck[l, n]
Dk[l, n]

,∀k, l, n, (19)

where
Ck[l, n] = Tr

(
Zk[n]Wk[n]

)
p̃k[l, n], (20)

Dk[l, n] =

K∑
j ̸=k

Tr
(
Zj [n]Wk[n]

)
p̃j [l, n] + σ̃2, (21)

with Zq[n] = Uq[n]ΥUH
q [n],∀q = {k, j}. Consequently,

the achievable rate in (13a) can be restated as R̃k(χk) =
F̃k(χk)− G̃k(χk), where χk is the collection of optimization
variables χk[l, n],∀l, n. We now define slack optimization
variables Ik[l, n],∀k, l, n to set an upper bound on the de-
nominator of (19). By incorporating these slack optimization
variables, we can regulate and control the SINR, leading to
the following reformulation:

χk[l, n]Ik[l, n] ≤ Ck[l, n], ∀k, l, n, (22)
Ik[l, n] ≥ Dk[l, n], ∀k, l, n, (23)

where Ik[l, n] denotes the k-th user interference on time slot
l and subcarrier n. This method of constraint manipulation is
a common approach used in optimization theory and is vital
in our case as it simplifies the complex function, transforming
it into a more manageable form. By referring to the objective
function of P5 as ¨̄Etotal, the revised optimization problem is



formulated as follows:
P6 : min

p,p̃,Φ,s,x,χ,Υ

¨̄Etotal (24)

s.t. : F̃k(χk)− G̃k(χk) ≥ skBk, ∀k, (24a)
diag(Υ) = 1M+1, (24b)
Υ ⪰ 0, (24c)
rank(Υ) ≤ 1, (24d)
(10c) − (10e), (12a) − (12c), (13a) − (13f),
(17a), (17b), (22), (23).

The optimization problem P6 remains non-convex due to the
non-convex nature of (22), (23), and the rank constraint (24d).
We also observe that constraints (22) and (23) fall into the
category of difference of convex (DC) problems [7], [18],
[24], [25]. In addition, the bilinear term χk[l, n]Ik[l, n] on
the left-hand side of (22) is non-convex, which poses an
extra challenge in designing an efficient resource allocation
algorithm. However, this product can also be expressed as
the difference of two convex functions, leading to a DC
representation of (22) and (23) as follows:
ς1(χk[l, n], Ik[l, n])− ς2(χk[l, n], Ik[l, n]) ≤(

ς3(Υ, p̃k[l, n])− ς4(Υ, p̃k[l, n])
)
, (25)

K∑
j ̸=k

(
ς5(Υ, p̃j [l, n])− ς6(Υ, p̃j [l, n])

)
+ σ̃2 ≤ Ik[l, n], (26)

where

ς1(χk[l, n], Ik[l, n]) = 0.5(χk[l, n] + Ik[l, n])2, (27)

ς2(χk[l, n], Ik[l, n]) = 0.5(χk[l, n])
2 + 0.5(Ik[l, n])2, (28)

ςζ(Υ, p̃ϑ[l, n]) = 0.5
(
p̃ϑ[l, n] + Tr(Zj [n]Wk[n])

)2
, (29)

∀{ζ, ϑ} = {{3, k}, {5, j}},

ςζ(Υ, p̃ϑ[l, n]) = 0.5(p̃ϑ[l, n])
2+0.5

(
Tr(Zj [n]Wk[n])

)2
, (30)

∀{ζ, ϑ} = {{4, k}, {6, j}}.
Both sides of (25) and the left-hand side of (26) are not convex.
To address the non-convexity of the left-hand side of (25), we
apply the SCA technique, which involves using a first-order
Taylor expansion to obtain a convex approximation of the non-
convex terms as follows:
ς̄2(χk[l, n], χ

(i)
k [l, n], Ik[l, n], I(i)

k [l, n]) = 0.5(χ
(i)
k [l, n])2

+ χ
(i)
k [l, n](χk[l, n]− χ

(i)
k [l, n]) + 0.5(I(i)

k [l, n])2

+ I(i)
k [l, n](Ik[l, n]− I(i)

k [l, n]),∀k, l, n. (31)
Similarly, to address the non-convexity of the right-hand side
of (25) and the left-hand side of (26), we also employ the SCA
technique. Thus, we can approximate these non-convex terms
as follows:
ς̃ζ(Υ, p̃ϑ[l, n],Υ

(i), p̃
(i)
ϑ [l, n]) = ςζ(Υ

(i), p̃
(i)
ϑ [l, n])

+ Tr(∇Υ(ςζ(Υ
(i), p̃

(i)
ϑ [l, n])H(Υ−Υ(i)))

+ Tr(∇p̃ϑ
(ςζ(Υ

(i), p̃
(i)
ϑ [l, n])H(p̃ϑ[l, n]− p̃

(i)
ϑ [l, n])),

∀{ζ, ϑ} = {{4, k}, {6, j}}, (32)
where ∇Υ(ςζ(Υ, p̃ϑ[l, n]) and ∇p̃ϑ

(ςζ(Υ, p̃ϑ[l, n]) are the
gradients of ςζ(Υ, p̃ϑ[l, n]), (30), with respect to Υ and p̃ϑ,
respectively. Therefore, (25) and (26) can be approximated as

Algorithm 1 Proposed Joint Iterative SCA Algorithm
Input: Set iteration index i = 1, and maximum number of

iteration Tmax, randomly initialize p0, p̃0, Φ0, s0, x0,
χ0, Υ0, and penalty factors [λ1, λ2, δ]

T ≻ 13

1: repeat
2: Calculate (31) and (32)
3: Solve P7 for given p(i), p̃(i), Φ(i), s(i), x(i), χ(i), and

Υ(i), and retain the intermediate solution
4: Set i = i+ 1 and p(i) = p∗, p̃(i) = p̃∗, Φ(i) = Φ∗,

s(i) = s∗, x(i) = x∗, χ(i) = χ∗, and Υ(i) = Υ∗

5: until i = Tmax

6: return p∗, p̃∗, Φ∗, s∗, x∗, χ∗, Υ∗

follows:
ς1(χk[l, n], Ik[l, n])− ς̄2(χk[l, n], χ

(i)
k [l, n], Ik[l, n], I(i)

k [l, n])

≤
(
ς3(Υ, p̃k[l, n])− ς̃4(Υ, p̃k[l, n],Υ

(i), p̃
(i)
k [l, n])

)
, (33)

K∑
j ̸=k

(
ς5(Υ, p̃j [l, n])− ς̃6(Υ, p̃j [l, n],Υ

(i), p̃
(i)
j [l, n])

)
+ σ̃2

≤ Ik[l, n],∀k, l, n. (34)
P6 is still not convex. Finally, the convexity of P6 hinges on
the rank of Υ. Typically, P6 yields solutions with a rank higher
than one. To prevail over this last challenge, we reformulate
constraint (24d) utilizing the DC method, resulting in the
following expression:

||Υ||∗ − ||Υ||2 ≤ 0. (35)
Note that ||Υ||∗ =

∑
i τi ≥ ||Υ||2 = maxi{τi} holds for any

given Υ, where τi is the i-th singular value of Υ. The equality
holds if and only if Υ achieves rank one i.e., rank(Υ) = 1 [7].
Now, we take the first-order Taylor approximation of ||Υ||2
as:

||Υ||2 ≥

=κ(Υ)︷ ︸︸ ︷
||Υ(t)||2 + Tr

(
λmax(Υ

(t))λH
max(Υ

(t))(Υ−Υt)
)
,

(36)
where λmax(·) returns the largest eigenvalue of Υ(t). By
utilizing (36), we can obtain a convex approximation for
(35), expressed as κ̃t(Υ) ≜ ||Υ||∗ − κ(Υ) ≤ 0. Finally,
the optimization problem is formulated by adding κ̃t(Υ) to
the objective function of P6 with a penalty factor δ ≫ 1 to
penalize non-rank-one matrices, as follows:

P7 : min
p,p̃,Φ,s,x,χ,Υ

¨̄Etotal + δ(κ̃t(Υ)) (37)

(10c) − (10e), (12a) − (12c), (13a) − (13f),
(17a), (17b), (24a) − (24c), (33), (34).

The optimization problem P7 can be effectively solved by
utilizing well-established convex optimization packages like
CVX [7], [18], [24], [25]. We outline our proposed joint
resource allocation algorithm in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we present simulation results to verify
the performance of the proposed IRS-assisted MEC system
using the simulation parameters provided in Table I, unless
otherwise stated. We assume the center of the network is the
point (0, 0) m and the AP is located at (0,−100) m while
the IRS is located at (50, 0). Moreover, five MTC-enabled



Table I. Simulation Parameters

Parameter Value

Total number of reflecting elements M 50

Total number of UL time slots L 4

Total number of subcarriers N 32

Bandwidth of each sub-carrier 30 kHz

Noise power density -174 dBm/Hz

Maximum transmit power of each user, pk,max 23 dBm

Circuit power consumption of user k, pcir 50 mW

Packet decoding error probability, ϵk 10−6

Number of bits per packet (bitstream size), Bk 160 bits

IoT users (K = 5) are randomly distributed inside a circle
with a radius of 4 m, and the center of the circle is the point
(25, 0) m. The path-loss model, based on distance, is defined
as L(d) = a0(d/d0)

−ξ, where a0 = −30 dB signifies the
signal attenuation at a reference distance of d0 = 1 m, d
represents the link distance, and ξ is the path-loss exponent.
Path-loss exponents for the AP-IRS, IRS-user, and AP-user
links are respectively set at 2.2, 2.2, and 3.4 [7]. We presume
that all links exhibit Rician fading, characterized by a Rician
factor of 3 dB [7], [19]. For the small-scale fading, we assume
Rayleigh fading for the AP-user channel and Rician fading
with a Rician factor of 10 for the AP-IRS and IRS-user
channels [7], [19].
A. Performance Bound and Benchmark Schemes

We assess the proposed resource allocation algorithm’s
efficiency by comparing it to the following baseline schemes:

• Lower bound: To obtain a lower bound on the system
performance, Shannon’s capacity formula is adopted in
problem P1, i.e., Vk[l, n],∀k, (6), is set to zero. The
resulting optimization problem is solved using a modified
version of the proposed algorithm.

• Method A: This is the proposed Algorithm 1.
• Method B: In this scheme, we adopt random phase

shifts for the IRS elements and optimize the users’ power
allocation and offloading decisions.

• Method C: In this approach, we maintain a fixed sub-
carrier allocation, based on [7] and [24], for offloading
while optimizing other variables using SCA.

• Method D: We remove the IRS from the system in this
scheme. We consider the UL power allocation and passive
beamforming based solely on the direct link between the
AP and the user.

B. Simulation Results
Fig. 2 illustrates the relationship between system power

consumption and packet error probability, highlighting the
impact of acceptable error rate and joint resource optimization
on power consumption. The power consumption is observed
to be a monotonically decreasing function of the packet error
probability. This behavior is attributed to the fact that the com-
plementary error function, used in the normal approximation
for the data rate function, i.e., (4), exhibits a monotonically
decreasing trend with respect to the packet error probability.
Consequently, as the packet error probability increases, the
influence of the dissipation part in the normal approximation

Fig. 2. Average power consumption [dBm] vs. decoding error probability.

diminishes. It is evident that a higher acceptable packet error
probability leads to a lower transmit power required to meet
the latency constraints of MTC-enabled IoT users. Moreover,
this figure also shows that for the lower bound on performance,
the power consumption is independent of the packet error
probability (lower bound). This is because of the zero packet
error probability assumption on Shannon’s capacity formula
(that is, Vk[l, n],∀k, (6)). The gap between the lower bound
and our proposed algorithm (Method A) represents the trade-
off required to meet the stringent delay and reliability require-
ments of ultra-reliable low-latency communication with short
packet transmission. The presence of IRSs in the system leads
to substantial power savings, resulting in improved energy
efficiency. However, it is important to consider the compu-
tational costs and investment required for deploying IRSs.
Increasing the number of reflecting elements (M ) enhances
the passive beamforming gain, thereby reducing the transmit
power of IoT devices and facilitating efficient offloading. The
performance of the scheme utilizing random IRS beamforming
(Method B) is inferior to that of a system utilizing an optimal
beamforming vector (Method A), but it outperforms a system
with fixed sub-carrier allocation (Method C). It is important to
note that deploying IRSs plays a crucial role in maximizing
the capabilities of MEC servers. By dynamically modifying
the wireless propagation environment in real time, IRSs help
ensure that users are not forced to allocate more power due to
poor channel conditions. This allows for efficient offloading
of user tasks to edge servers rather than having to compute the
tasks locally. Furthermore, deploying IRSs helps guarantee that
transmissions are completed within the desired delay, meeting
the latency requirements of the system. This highlights the
significance of IRSs in optimizing system performance and
enabling effective task offloading in MEC environments.
In Fig. 3, the power consumption of the system is shown
for different task sizes (a.k.a. bitstream sizes). As task sizes
increase, power consumption increases in all schemes due to
the need for higher SINRs and increased transmit power. The
presence of IRSs improves SINRs by providing additional



Fig. 3. Average power consumption [dBm] vs. the task size [bits].

LoS links, enabling the system to handle larger task sizes
(method A) compared to systems without IRSs (method D).
The proposed algorithm outperforms non-optimal subcarrier
allocation and random IRS configuration by leveraging the
improved SINRs (methods B and C). Moreover, the proposed
method effectively reduces power consumption by optimizing
offloading, subchannel allocation, and transmission power.
The results emphasize the importance of choosing between
offloading and local computing, especially when processing
larger data sets.

VI. CONCLUSIONS

This paper studied the resource allocation algorithm design
for a UL multi-user IRS-aided MEC system. In order to meet
the strict requirements for end-to-end transmission delay and
reliability inherent to MTC-enabled IoT users, we investigated
a joint resource allocation and offloading decision scheme that
considers short packet transmission. The IRS was deployed
to enhance the communication channel and to increase re-
liability by providing virtual LoS links. We formulated an
optimization problem for the minimization of average system
power consumption subject to QoS constraints. The resulting
problem was a non-convex MINLP, which posed significant
challenges to finding a solution. An efficient, low-complexity
algorithm was designed, utilizing SCA and an iterative rank
minimization method, allowing it to find a local optimum.
The simulation results highlighted the efficacy of our proposed
algorithm and underscored the practical value of IRS in MEC
systems for expanding coverage and assisting multiple energy-
constrained devices with binary task offloading.
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